Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.
Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:
\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)
\(\Leftrightarrow1,477=16\left(sai\right)\)
Vậy đề bài cho tào lao.
a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)
b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)
d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)
b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)
c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)
d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
a) \(ab^2\cdot\sqrt{\dfrac{3}{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
= \(\sqrt{3}\)
b) b. \(\sqrt{\dfrac{27\cdot\left(a-3\right)^2}{48}=}\dfrac{\sqrt{27}\cdot\sqrt{\left(a-3\right)^2}}{\sqrt{48}}\)
= \(\dfrac{3\cdot\sqrt{3}\cdot\left(a-3\right)}{\sqrt{3}\cdot\sqrt{16}}=\dfrac{3\cdot\left(a-3\right)}{4}\)
= 0.75*(a-3)
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
Hình như sai đề bạn ơi???
ko sai nhé