K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

k nếu đúng nhé!

29 tháng 5 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

3 tháng 5 2016

Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được

Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5

Theo đề bài ta có

Xét 4 số a1;a2;a3;a4

a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay  a1.a3=a2.a4)  (1)

Xét 4 số a1;a2;a3;a5

a1.a5=a2.a3            (2)

Từ (1) và (2) suy ra a4=a5(không thỏa mãn)

Suy ra chỉ có 4 số khác nhau trong đó  

Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng

21 tháng 11 2017

Theo đề bài: p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p = 2k + 1 ( \(k\in z;k>1\))

=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)

=> A chia hết cho 8  (1)

Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))

=> A chia hết cho 3   (2)

Từ (1) và (2) => A chia hết cho 24

21 tháng 11 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

30 tháng 1 2017

=> p = 2

2 + a + 2 + 2 + 2a

= 6 + 3a

6 chia hết cho 2

3a chia hết cho 3

=> a chia hết cho 6

30 tháng 1 2017

p > 3 mà bạn Nguyễn Khánh Dương. Sao p = 2 đc 

4 tháng 10 2017

5) số hs khá 5 ; so với cả lớp 20%

gioi 5

tb 24

30 tháng 1 2017

Gọi 5 số đó là a;b;c;d;e (a;b;c;d;e thuộc Z)

Giả sử: S1 = a

S2 = a + b

S3 = a + b + c

S4 = a + b + c + d

S5 = a + b + c + d + e

- Nếu 1 trong 5 tổng trên có 1 tổng chia hết cho 5, ta có đpcm

- Nếu trong 5 tổng trên không có tổng nào chia hết cho 5, ta chỉ còn lại 4 loại số dư khi chia cho 5. Mà có 5 tổng nên sẽ có ít nhất 2 tổng có cùng dư. Hiệu của chúng chia hết cho 5 và cũng chính là giá trị của 1 số hoặc tổng 1 số số trong 5 số a;b;c;d;e

Vậy ta có đpcm