Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đề hẳn hoi ko đồng chí, nếu là nguyên lí thì ko cần chứng minh =))
Trong toán học, đa thức trên một vành (hoặc trường) K là một biểu thức dưới dạng tổng đại số của các đơn thức. Mỗi đơn thức là tích của một phần tử (được gọi là hệ tử hoặc hệ số) thuộc K với các lũy thừa tự nhiên của các biến.
Trong chương trình giáo dục phổ thông, thường xét các đa thức trên trường số thực, trong những bài toán cụ thể có thể xét các đa thức với hệ số nguyên hoặc hệ số hữu tỷ.
Ví dụ: f (x, y, z) = 2 x2 y - 3 y2 + 5 y z - 2 là một đa thức, với x, y và z là các biến.
Hàm số biểu diễn bởi một đa thức được gọi là hàm đa thức. Phương trình P = 0 trong đó P là một đa thức được gọi là phương trình đại số.
Trong toán học, đa thức trên một vành (hoặc trường) K là một biểu thức dưới dạng tổng đại số của các đơn thức. Mỗi đơn thức là tích của một phần tử (được gọi là hệ tử hoặc hệ số) thuộc K với các lũy thừa tự nhiên của các biến.
Trong chương trình giáo dục phổ thông, thường xét các đa thức trên trường số thực, trong những bài toán cụ thể có thể xét các đa thức với hệ số nguyên hoặc hệ số hữu tỷ.
Ví dụ: f (x, y, z) = 2 x2 y - 3 y2 + 5 y z - 2 là một đa thức, với x, y và z là các biến.
Hàm số biểu diễn bởi một đa thức được gọi là hàm đa thức. Phương trình P = 0 trong đó P là một đa thức được gọi là phương trình đại số.
bạn làm kí hiệu gì vậy mà toàn hình ko lin quan vậy ko hỉu
Toàn đăng mấy cái linh tinh
Report luôn
WTF HỎI ÉO GÌ ĐẤY VỪA RA VIỆN TÂM THẦN À ĐỒ ĐIÊN VÀ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................T............................................................................................................................................................................................................................H...........................................................................................................Ầ..............................................................................................................................................................................................................................................................N............................................................................................................................................................................................................................................................................................................................................................KINH