K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2021

\(2\overrightarrow{a}+3\overrightarrow{b}=2\left(x;2\right)+3\left(-5;1\right)=\left(2x-15;7\right)\)

\(\overrightarrow{c}=2\overrightarrow{a}+3\overrightarrow{b}\Rightarrow x=2x-15\)

\(\Rightarrow x=15\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2017

Lời giải:

Ta biết một vài tính chất của hình bình hành có tâm $O$:

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=0\)

a) Ta có:

\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=4\overrightarrow{ID}\)

\(\Leftrightarrow \overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{IO}+\overrightarrow{OB}+\overrightarrow{IO}+\overrightarrow{OC}=4\overrightarrow{IO}+4\overrightarrow{OD}\)

\(\Leftrightarrow \overrightarrow{OB}=\overrightarrow{IO}+4\overrightarrow{OD}\Leftrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{IO}+3\overrightarrow{OD}\)

\(\Leftrightarrow{DB}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 2\overrightarrow{DO}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 5\overrightarrow{DO}=\overrightarrow{IO}\)

Do đó điểm $I$ nằm trên đường thẳng $DO$ sao cho $IO=5DO$

b)

\(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}+2\overrightarrow{FO}+2\overrightarrow{OB}=3\overrightarrow{FO}+3\overrightarrow{OC}-(\overrightarrow{FO}+\overrightarrow{OD})\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}-3\overrightarrow{OC}+2\overrightarrow{OB}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+5\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy điểm $I$ thỏa mãn \(5\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 2\overrightarrow{FO}+5\overrightarrow{OI}+5\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+6\overrightarrow{OI}=0\Rightarrow \overrightarrow {OF}=3\overrightarrow {OI}\)

Điểm I thỏa mãn nằm trên đoạn $AB$ sao cho $5IA=IB$

Điểm F thỏa mãn nằm trên đường thẳng $OI$ sao cho $OF=3OI$ và I nằm giữa $OF$

c)

\(4\overrightarrow{KA}+3\overrightarrow{KB}+2\overrightarrow{KC}+\overrightarrow{KD}=0\)

\(\Leftrightarrow 4\overrightarrow{KO}+4\overrightarrow{OA}+3\overrightarrow{KO}+3\overrightarrow{OB}+2\overrightarrow{KO}+2\overrightarrow{OC}+\overrightarrow{KO}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 10\overrightarrow{KO}+2\overrightarrow{OA}+\overrightarrow{OB}=0\)

\(\Leftrightarrow 5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy $I$ là trung điểm của AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 0=5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=5\overrightarrow{KO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}\)

\(\Leftrightarrow 0=5\overrightarrow{KO}+2\overrightarrow{OI}\Leftrightarrow 5\overrightarrow{OK}=2\overrightarrow{OI}\)

Do đó điểm K nằm trên đoạn thẳng OI sao cho $5OK=2OI$

27 tháng 8 2017

giúp mình nhá mình cần ngay cảm ơn mọi người

vecto i=(1;0)

vecto j=(0;1)

a: vecto a=(1;-3)

b: vecto b=(1/2;1)

c: vecto c=(-1;3/2)

d: vecto d=(0;-4)

e: vecto e=(3;0)

NV
14 tháng 11 2021

a.

\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)

\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)

\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)

b.

\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)

\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)

c.

\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)

\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)

NV
15 tháng 11 2018

\(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}-\overrightarrow{c}=2\left(3;2\right)+3\left(-4;7\right)-\left(5;0\right)=\left(2.3-3.4-5;2.2+3.7+0\right)=\left(-11;25\right)\)

\(\overrightarrow{a}=x.\overrightarrow{b}+y.\overrightarrow{c}\) \(\Rightarrow\left\{{}\begin{matrix}3=-4x+5y\\2=7x+0.y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-11}{28}\\y=\dfrac{2}{7}\end{matrix}\right.\)

Vậy \(\overrightarrow{a}=\dfrac{-11}{28}\overrightarrow{b}+\dfrac{2}{7}\overrightarrow{c}\)

Tương tự câu trên: \(\overrightarrow{c}=x.\overrightarrow{a}+y.\overrightarrow{b}\) \(\Rightarrow\left\{{}\begin{matrix}5=3x-4y\\0=2x+7y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{35}{29}\\y=\dfrac{-10}{29}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{c}=\dfrac{35}{29}\overrightarrow{a}-\dfrac{10}{29}\overrightarrow{b}\)

Quên còn biểu biễn b chưa làm, thôi bạn tự làm nốt, nó y hệt thôi, cứ việc bấm máy giải hệ 3s là xong