K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

Ta có \(A\left(x\right)=\dfrac{1}{3}x+1=0\Leftrightarrow x=-1:\dfrac{1}{3}=-3\)

\(B\left(x\right)=-\dfrac{3}{4}x+\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}\left(-\dfrac{3}{4}\right)=4\)

\(C=\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow x=2;x=-1\)

\(D\left(x\right)-4x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ta có x2-x+1=(x2-2*1/2x+1/4)+3/4 =(x-1/2)2+3/4.

vì (x-1/2)2 >=0 với mọi x => (x-1/2)2+3/4 >=3/4 >0

vậy đa thức x2-x+1 vô nghiệm

26 tháng 3 2016

câu 1,

trong sách nâng cao và phát triển toán 7 tập 2 trang 15 có bài tương tự đấy.

26 tháng 3 2016

2/ a. Ta có : x- 5x + 6 = x- 3x - 2x + 6 = ( x​- 3x ) + ( - 2x + 6 ) = x ( x - 3 ) - 2 ( x - 3 ) = ( x - 3  )( x - 2 ) = 0 => x - 3 = 0 hoặc x - 2 = 0 => x = 3 hoặc x = 2

c. Tá có : 6x^2 - 11x + 3 = 6x^2 - 9x - 2x + 3 = ( 6x^2 -  9x ) + ( - 2x + 3 ) = 3x ( 2x - 3 ) - ( 2x - 3 ) = ( 2x - 3 )( 3x - 1 ) = 0 => 2x-3 =0 hoặc 3x-1 =0 => x= 3/2 hoặc x =1/3

Mấy bài sau làm tương tự nha

3 tháng 7 2018

1/ 

a,=>P(x)=2x3-4x2+5x-7-2x3+4x2-x+10=4x+3

=>Q(x)=-9x3-8x2+5x+11+9x3+8x2-2x-7=3x+4

b, Ta có: P(x)=0 => 4x+3=0 => x=-3/4

Q(x)=0 => 3x+4=0 => x=-4/3

c, P(x)+Q(x)=4x+3+3x+4=7x+7

P(x)-Q(x)=4x+3-(3x+4)=4x+3-3x-4=x-1

2/

a, x2-5x-6=0

=>x2-6x+x-6=0

=>x(x-6)+(x-6)=0

=>(x+1)(x-6)=0

=>\(\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}}\)

b, (x+1)(x2+1)=0

Vì x2+1>0

=>x+1=0=>x=-1

c, \(-x^2-\frac{2}{5}=0\Rightarrow-x^2=\frac{2}{5}\Rightarrow x^2=\frac{-2}{5}\)

mà x2 lớn hoặc bằng 0  => không có x thỏa mãn

d, \(2x^2-x-6=0\Rightarrow2x^2-4x+3x-6=0\)

=>2x(x-2)+3(x-2)=0

=>(2x+3)(x-2)=0

=>\(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}}\)

3/

a, P(x)=(5x3-x3-4x3)+(2x4-x4)+(-x2+3x2)+1=x4+2x2+1

b, P(1)=14+2.12+1=1+2+1=4

P(-1)=(-1)4+2.(-1)2+1=1+2+1=4

c, Vì \(x^4\ge0;2x^2\ge0\Rightarrow x^4+2x^2\ge0\Rightarrow P\left(x\right)=x^4+2x^2+1\ge1>0\)

Vậy P(x) khoogn có nghiệm

8 tháng 4 2019

Q(x)=x(x^2+3x+2)=x(x2+x+2x+2)=x(x+1)(x+2)=>nghiệm(0;-1;-2)

P(x) hình như bạn lộn đề rồi

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3 a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến b) Tính M(-1) và M(1) c) Chứng tỏ đa thức trên không có nghiệm Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011 a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến. b) Tính P(x) + Q(x) và P(x) – Q(x). c) Chứng tỏ x = 0...
Đọc tiếp

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3

a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến

b) Tính M(-1) và M(1)

c) Chứng tỏ đa thức trên không có nghiệm

Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011

a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.

b) Tính P(x) + Q(x) và P(x) – Q(x).

c) Chứng tỏ x = 0 không phải là nghiệm của hai đa thức P(x) và Q(x).

Bài 3: Tìm nghiệm của đa thức:

a) P(x) = 4x – 1/2; b) Q(x) = (x-1)(x+1) c) A(x) = - 12x + 18

d) B(x) = -x2 + 16 e)C(x) = 3x2 + 12

Bài 4: Cho các đa thức: A(x) = 5x - 2x4 + x3 -5 + x2 ; B(x) = - x4 + 4x2 - 3x3 + 7 - 6x;

C(x) = x + x3 -2

a) Tính A(x) + B(x); b) A(x) - B(x) + C(x)

c) Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x).

<<< GIẢI GẤP CHO TỚ VỚI NHÉ ; CẦN LẮM >>>

........................CẦU XIN BẠN ĐẤY..................................

1
1 tháng 5 2018

1a, M(x)=\(x^4+x^2+1\)

b,M(-1)=(-1)\(^4\)+(-1)\(^2\)+1

=3

M(1)=(1)\(^4\)+(1)\(^2\)+1

=3

2a,P(x)=\(6x^4-3x^3+2x^2+2010\)

Q(x)=\(-3x^4+2x^3-5x^2-2011\)

b,P(x)+Q(x)=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011

=(6x\(^4\)-3x\(^4\))+(-3x\(^3\)+2x\(^3\))+(2x\(^2\)-5x\(^2\))+(2010-2011)

= 3x\(^4\)-x\(^3\)-3x\(^2\)-1

P(x)-Q(x)=(6x\(^4\)-3x\(^3\)+2x\(^2\)+2010)-(-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011)

=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010+3x\(^4\)-2x\(^3\)+5x\(^2\)+2011

=(6x\(^4\)+3x\(^4\))+(-3x\(^3\)-2x\(^3\))+(2x\(^2\)+5x\(^2\))+(2010+2011)

= \(9x^4-5x^3+7x^2+4021\)

3a,P(x)=0<=>4x-1/2=0<=>4x=1/2<=>x=1/8

vậy 1/8 là n\(_o\) của P(x)

b,Q(x)=0<=>(x-1)(x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

vậy 1 và -1 là n\(_o\) của Q(x)

c,A(x)=0<=>-12x+18=0<=>-12x=-18<=>x=3/2

vậy 3/2 là n\(o\) của A(x)

d,B(x)=0<=>\(-x^2+16\)=0<=>-x\(^2\)=16<=>-(x)\(^2\)=-(\(\pm\)4)\(^2\)

<=>x=\(\pm\)4

vậy \(\pm\)4 là n\(_o\)củaB(x)

e,C(x)=0<=>3x\(^2\)+12=0<=>3x\(^2\)=-12<=>x\(^2\)=-4<=>x\(^2\)=-(4)\(^2\)

<=>x=4

vậy 4 là n\(_o\) của C(x)

12 tháng 4 2017

lm ơn giúp mik vskhocroi

12 tháng 4 2017

Mình giải giúp bạn nha:

a, \(x^2+3\times x-6\)

Có: \(x^2+3\times x-6=0\)

\(\Rightarrow x^2+2\times x\times\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2-6=0\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{33}{4}=0\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{33}{4}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{2}=\sqrt{\dfrac{33}{4}}\\x+\dfrac{3}{2}=-\sqrt{\dfrac{33}{4}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=\dfrac{-3+\sqrt{33}}{2}\\x=-\sqrt{\dfrac{33}{4}}-\dfrac{3}{2}=-\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)

Vậy đa thức \(x^2-3x-6\) có nghiệm là \(x=\dfrac{-3+\sqrt{33}}{2};x=-\dfrac{3+\sqrt{33}}{2}\)

b, \(4\times x^2+8\times x-4\)

Cho: \(4\times x^2+8\times x-4=0\)

\(\Rightarrow\left(4\times x^2+8\times x-4\right)\times\dfrac{1}{4}=0\times\dfrac{1}{4}\)

\(4\times x^2-\dfrac{1}{4}+8\times x\times\dfrac{1}{4}-4\times\dfrac{1}{4}=0\)

\(x^2+2\times x-1=0\)

\(x^2+x+x-1=0\)

\(x\times\left(x+1\right)+\left(x+1\right)-2=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)=2\)

\(\Rightarrow\left(x+1\right)^2=2\)

\(\Rightarrow x+1=\pm\sqrt{2}\)

TH1: \(x+1=\sqrt{2}\Rightarrow x=\sqrt{2}-1\)

TH2: \(x+1=-\sqrt{2}\Rightarrow x=-\sqrt{2}-1\)

Vậy nghiệm của đa thức \(4\times x^2+8\times x-4\)\(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)

28 tháng 6 2020

a) P(x) = 5x- 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

        = -x3 + x2 + x + 1

b) M(x) = P(x) + Q(x)

             = ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )

             = 5x3 - 4x + 7 -x3 + x2 + x + 1

             = 4x3 + x2 - 3x + 8

N(x) = P(x) - Q(x) 

        = ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )

        = 5x3 - 4x + 7 + x3 - x2 - x - 1

        = 6x3 - x2 - 5x + 6

c) M(x) =  4x3 + x2 - 3x + 8

M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0

( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu ) 

28 tháng 6 2020

oke bạn, thank bạn nhaaaaa:)

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2