Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ĐK: $x-2\geq 0\Leftrightarrow x\geq 2$
TXĐ: $[2;+\infty)$
b)
ĐK: $4x-3\geq 0\Leftrightarrow x\geq \frac{3}{4}$
TXĐ: $[\frac{3}{4};+\infty)$
c) ĐK: \(x+2>0\Leftrightarrow x>-2\)
TXĐ: $(-2;+\infty)$
d)
ĐK: $3-x>0\Leftrightarrow x< 3$
TXĐ: $(-\infty; 3)$
e)
$4-3x>0\Leftrightarrow x< \frac{4}{3}$
TXĐ: $(-\infty; \frac{4}{3})$
f)
ĐK:\(\left\{\begin{matrix} x^2+2\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow x\geq 0\)
TXĐ: $[0;+\infty)$
g) ĐK: \(\left\{\begin{matrix} x^2-2x+1\geq 0\\ 2-3x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2\geq 0\\ x\leq\frac{2}{3}\end{matrix}\right.\Leftrightarrow x\leq \frac{2}{3}\)
TXĐ: $(-\infty; \frac{2}{3}]$
h)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
TXĐ: $[2;+\infty)$
i)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ 2-x\geq 0\end{matrix}\right.\Leftrightarrow 2\geq x\geq -2\)
TXĐ: $[-2;2]$
4. đặt \(\sqrt[3]{x+24}=a\) và \(\sqrt{12-x}=b\)(b>=0)
==>ta có hệ pt
\(\int_{a^3+b^2=36}^{a+b=6}\)<=> \(\int_{a^3+\left(6-a\right)^2=36}^{b=6-a}\)<=> \(\int_{b=6-a}^{a^3+a^2-12a=0}\)<=> \(\int_{b=6-a}^{a\left(a^2+a-12\right)=0}\)<=>\(\int_{b=6-a}^{a\left(a+4\right)\left(a-3\right)=0}\)
đến đây bạn tự tìm a;b rufit hay vào tìm x là ok
3. \(\Leftrightarrow\sqrt[3]{2x^2}-\sqrt[3]{x+1}+\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}=0\)
\(\Leftrightarrow\frac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{2x^2-x-1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}=0\)
\(\Leftrightarrow2x^2-x-1=0\)
( do \(\frac{1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}>0\forall xTMĐK\))
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=\frac{9}{8}\Leftrightarrow\left(x-\frac{1}{4}\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}=\frac{3}{4}\\x-\frac{1}{4}=-\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\) ( TM )
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
a: ĐKXĐ: 3-2x>=0
=>x<=3/2
b: DKXĐ: \(\left\{{}\begin{matrix}4x+1>=0\\-2x+1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\x< =\dfrac{1}{2}\end{matrix}\right.\)
c: ĐKXĐ: x^2+2x-5<>0
hay \(x\ne-1\pm\sqrt{6}\)
d: ĐKXĐ: 2-x>0 và 4x+3>=0
=>x>=-3/4 và x<2
e: ĐKXĐ: (x+10)(x-2)<>0 và x>=-9
=>x>=-9 và x<>2
a. \(\sqrt{x+8}=x+2\)
đk x ≥ -2
⇔ \(\left(\sqrt{x+8}\right)^2\) = (x + 2 )2
⇔ x + 8 = x2 + 4x + 4
⇔ x2 + 3x - 4 = 0
⇔ (x - 1)(x + 4) = 0
⇔\(\left[{}\begin{matrix}x=1\\x=-4\left(L\right)\end{matrix}\right.\)
S = \(\left\{1\right\}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{7}{3}\\9x^2-42x+49-5x-3=0\end{matrix}\right.\)
=>x>=7/3 và 9x^2-47x+46=0
=>\(x=\dfrac{47+\sqrt{553}}{18}\)
d: \(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\3x^2-2x-1=9x^2+6x+1\end{matrix}\right.\)
=>x>=-1/3 và -6x^2-8x-2=0
=>x=-1/3
e: =>3x-5=16
=>3x=21
=>x=7
g: =>x<=3 và x^2+x+1=x^2-6x+9
=>x=8/7
a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)
vậy với mọi x thì biểu thức trên luôn xác định.
b) Để .......
\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)
vậy biểu thức trên xác định khi x>1.
c) Để ..........
\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)
Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)
d) Để ........
\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)
Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)
e) Để ......
\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)
Vậy để btxđ khi ....
Rồi yêu cầu đề bài đâu bạn. ?