K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

gọi biểu thức trên là A , ta có :

\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+\dfrac{5}{3^5}-...+\dfrac{99}{3^{99}}+\dfrac{100}{3^{100}}\\ 3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\\ \Rightarrow A+3A=\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)+\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\\ \Rightarrow4A\cdot3=12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

từ đó ta được :

\(16A=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\\ \Rightarrow A=\dfrac{\dfrac{3-101}{3^{99}}-\dfrac{100}{3^{100}}}{16}\\ \Rightarrow A=\dfrac{3}{16}-\dfrac{\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{16}< \dfrac{3}{16}\)

 

9 tháng 2 2022

help mik với 

5 tháng 3 2020

1) Từ 1 đến 100 có tất cả 100 số số hạng

=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)

=> A=5050

2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng

=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)

=> B=250

3) làm tương tự

4) S=\(1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+....+2^{10}\)

\(2S-S=2^{10}-1\)

\(\Rightarrow S=2^{10}-1\)

5) làm tương tự

5 tháng 3 2020

A=1+2+3+...+99+100

Số số hạng của dãyA là:

(100-1):1+1=100(số hạng)

Tổng của dãy A là :

(100+1).100:2=5050

B=1+3+5+...+97+99

Số số hạng của dãy B là:

 (99-1):2+1=50 (số hạng)

Tổng của dãy B là:

  (99+1).50:2=250

C=2+4+6+...+98+100

Số số hạng của dãy C  là:

  (100-2):2+1=50(số hạng)

Tổng của dãy C là: 

  (100+2).50:2=2550

      S=1+2+22+23+...+29

    2S=    2+22+23+...+29+210

2S-S=1-210

      S=1-210

M=1+3+32+33+...+39

3M=3+32+33+...+39+310

3M-M=1-310

2M=1-310

M=(1-310):2

22 tháng 2 2020

a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)

=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)

=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)

=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)

=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20

22 tháng 2 2020

b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99

=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100

=> 3S+S = 1 - 3^100

=>4S=1 - 3^100

=> S = \(\frac{1-3^{100}}{^4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1

2 tháng 2 2019

bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x

2 tháng 2 2019

\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)

\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20

2 tháng 2 2019

b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3S+S=1-3^{100}\)

\(S=\frac{1-3^{100}}{4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1