Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bán kính: \(R=2\sqrt{5}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)
Giao điểm của d và (C) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm
b, Gọi H là trung điểm AB.
Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)
Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)
\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)
Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)
\(\Rightarrow\widehat{HBI}=30^o\)
Khi đó:
\(IH=d\left(I;\Delta\right)\)
\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)
\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)
\(\Leftrightarrow m=5\pm5\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)
a, Bán kính: \(R=2\sqrt{545}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)
Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow...\)
1/ Gọi phương trình \(\Delta:ax+by+c=0\)
Do \(M\in\Delta\Rightarrow a+2b+c=0\Rightarrow c=-a-2b\)
\(\Rightarrow\Delta:ax+by-a-2b=0\)
Gọi A là giao của \(\Delta\) và Ox: \(A\left(\frac{a+2b}{a};0\right)\)
Gọi B là giao của \(\Delta\) và Oy \(\Rightarrow B\left(0;\frac{a+2b}{b}\right)\)
Do M là trung điểm AB \(\Rightarrow\overrightarrow{AM}=\overrightarrow{MB}\)
\(\Rightarrow\left(1-\frac{a+2b}{a};2\right)=\left(-1;\frac{a-2b}{b}-2\right)\Rightarrow\left\{{}\begin{matrix}1-\frac{a+2b}{a}=-1\\\frac{a+2b}{b}-2=2\end{matrix}\right.\) \(\Rightarrow a=2b\)
Phương trình \(\Delta:2bx+by-2b-2b=0\)
\(\Leftrightarrow2x+y-4=0\)
2/
\(\overrightarrow{IM}=\left(3;-3\right)\) mà \(IM\perp BC\) \(\Rightarrow\) phương trình BC:
\(1\left(x-0\right)-1\left(y+3\right)=0\Leftrightarrow x-y-3=0\Rightarrow B\left(b;b-3\right)\)
Trên tia đối của tia IA lấy D sao cho \(ID=IA\Rightarrow AD\) là đường kính đường tròn ngoại tiếp tứ giác ABDC
H là trực tâm \(\Rightarrow BH\perp AC\), mà \(CD\perp AC\) (\(\widehat{ACD}\) nội tiếp chắn nửa đường tròn) \(\Rightarrow BH//CD\)
Chứng minh tương tự ta có \(CH//BD\Rightarrow BHCD\) là hbh
BC, HD là 2 đường chéo của hbh, mà M là trung điểm BC \(\Rightarrow M\) là trung điểm HD
Trong tam giác AHD, có M là trung điểm HD, I là trung điểm AD \(\Rightarrow IM\) là đường trung bình \(\Rightarrow\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AH}\)
\(\Rightarrow\overrightarrow{AH}=\left(6;-6\right)\Rightarrow A\left(-7;10\right)\)
M là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_B=-b\\y_C=2y_M-y_B=-b-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(b+7;b-13\right)\\\overrightarrow{CH}=\left(b-1;b+7\right)\end{matrix}\right.\)
\(\overrightarrow{AB}.\overrightarrow{CH}=0\Rightarrow\left(b+7\right)\left(b-1\right)+\left(b-13\right)\left(b+7\right)=0\)
\(\Rightarrow\left(b+7\right)\left(2b-14\right)=0\Rightarrow\left[{}\begin{matrix}b=7\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(7;4\right);C\left(-7;-10\right)\\B\left(-7;-10\right);C\left(7;4\right)\end{matrix}\right.\)
Gọi M là trung điểm OA \(\Rightarrow M\left(-\frac{1}{2};\frac{1}{2}\right)\)
\(\overrightarrow{AO}=\left(1;-1\right)\Rightarrow\) trung trực của OA nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình trung trực d' của OA:
\(1\left(x+\frac{1}{2}\right)-1\left(y-\frac{1}{2}\right)=0\Leftrightarrow x-y+1=0\)
Đường tròn qua O và A có tâm thuộc d', gọi tâm đường tròn là \(J\left(a;a+1\right)\)
Bán kính đường tròn bằng khoảng cách từ J đến d:
\(R=d\left(J;d\right)=\frac{\left|a-\left(a+1\right)+1-\sqrt{2}\right|}{\sqrt{1+1}}=1\)
\(\overrightarrow{OJ}=\left(a;a+1\right)\Rightarrow OJ=\sqrt{a^2+\left(a+1\right)^2}=\sqrt{2a^2+2a+1}\)
Mà \(OJ=R\Rightarrow2a^2+2a+1=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(0;1\right)\\K\left(-1;0\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IK}=\left(-1;-1\right)\Rightarrow IK=\sqrt{2}\)
a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.
b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$
c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:
Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.
Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.
Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$
và
$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$
a)
ptts : \(\left\{{}\begin{matrix}x=2+t\\y=3+4t\end{matrix}\right.\)
b) Phương trình đường thẳng đi qua AH vuông góc với đường thẳng d
=> Lấy véctơ pháp tuyến của (d) làm VTCP -> \(\overrightarrow{u}\left(4;3\right)\)
-> VTPT \(\overrightarrow{n}\left(3;-4\right)\)
Pttq đường thẳng AH là:
3(x-2) - 4(y-3) = 0
=> 3x -4y +6 = 0
H la giao điểm của đường thẳng d và AH
=> nghiệm của hệ pt: \(\left\{{}\begin{matrix}4x+3y-3=0\\3x-4y+6=0\end{matrix}\right.\) là tọa độ điểm H
=> \(H\left(-\frac{6}{25};\frac{33}{25}\right)\)