K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(B=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{a-1}{a-2\sqrt{a}+1}\)

\(=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\)

\(=\dfrac{1}{\sqrt{a}}\)

b) Thay \(a=3-2\sqrt{2}\) vào biểu thức \(B=\dfrac{1}{\sqrt{a}}\), ta được:

\(B=\dfrac{1}{\sqrt{3-2\sqrt{2}}}=\dfrac{1}{\sqrt{2}-1}=\sqrt{2}+1\)

Vậy: Khi \(a=3-2\sqrt{2}\) thì \(B=\sqrt{2}+1\)

29 tháng 11 2018

a) \(P=\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\sqrt{a}-a\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

b) Ta có \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\Leftrightarrow ab-a-b+1+2\sqrt{ab}=1\Leftrightarrow ab=\left(\sqrt{a}-\sqrt{b}\right)^2\Leftrightarrow\left(\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right)^2=1\Leftrightarrow\left|\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right|=1\Leftrightarrow\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=1\Leftrightarrow P=1\)(Vì b>a>0)

Vậy \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\) thì P=1

2 tháng 10 2018

ko biet

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

24 tháng 6 2017

bài 2 ) a) đk : \(a>0;b>0\)

b) P = \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

P = \(\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

P = \(\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\) = \(a-b\)

c) ta có P = \(a-b\) thay \(a=2\sqrt{3};b=\sqrt{3}\) vào ta có

P = \(2\sqrt{3}-\sqrt{3}=\sqrt{3}\) vậy khi \(a=2\sqrt{3};b=\sqrt{3}\) thì P = \(\sqrt{3}\)

24 tháng 6 2017

bài 1) a) P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

P = \(\dfrac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-a^2\sqrt{a}+a^2-a+\sqrt{a}}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{2a+2}{\sqrt{a}}\)

P = \(\dfrac{2a^2-2a}{a^2-a}+\dfrac{2a+1}{\sqrt{a}}\) = \(\dfrac{2\left(a^2-a\right)}{a^2-a}+\dfrac{2a+2}{\sqrt{a}}\)

P = \(2+\dfrac{2a+2}{\sqrt{a}}\) = \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

b) ta có P = 7 \(\Leftrightarrow\) \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\) \(\Leftrightarrow\) \(2a+2\sqrt{a}+2=7\sqrt{a}\)

\(\Leftrightarrow\) \(2a-5\sqrt{a}+2=0\) (1)

đặc \(\sqrt{a}=u\) \(\left(u\ge0\right)\) (1) \(\Leftrightarrow\) \(2u^2-5u+2\)

\(\Delta=\left(-5\right)^2-4.2.2\) = \(25-16=9>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(u_1=\dfrac{5+3}{4}=\dfrac{8}{4}=2\left(tmđk\right)\)

\(u_2=\dfrac{5-3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\left(tmđk\right)\)

ta có : \(u=\sqrt{a}=2\Leftrightarrow x=4\)

\(u=\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)

vậy \(a=4;a=\dfrac{1}{4}\) thì P = 7

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

22 tháng 4 2017

a)

Q=aa2b2(1+aa2b2):baa2b2=aa2b2a2(a2b2)ba2b2=aa2b2a2a2+b2ba2b2=aba2

20 tháng 7 2018

a)\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\):\(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a-1}\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a-1}\right)}\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{\left(a-1\right)\left(a-4\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-a+4}\)

\(=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\) ĐKXĐ: \(x>0\) \(a\ne4\) \(a\ne1\)

b) \(Q>0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)

\(3\sqrt{a}>0\) (Kết hợp ĐKXĐ \(a>0\))

\(\Leftrightarrow\sqrt{a}-2>0\)

\(\Leftrightarrow\sqrt{a}>2\)

\(\Leftrightarrow a>4\) (Thỏa mãn ĐKXĐ)

Vậy \(a>4\) thì \(Q>0\)

____♫ Chúc bạn học tốt ♫____

18 tháng 3 2021

P/s gọi a = x cho dễ viết nhé 

a, Với \(x\ge0;x\ne1;x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

chỗ này mình nghĩ ko phải trục căn thức đâu ha :D 

b, Ta có P > 1/6 hay \(\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Leftrightarrow\frac{\sqrt[]{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{6\sqrt{x}-12-3\sqrt{x}}{18\sqrt{x}}>0\Leftrightarrow\frac{3\sqrt{x}-12}{18\sqrt{x}}>0\)

\(\Leftrightarrow3\sqrt{x}-12>0\)( vì \(18\sqrt{x}>0\))

\(\Leftrightarrow3\sqrt{x}>12\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

Vậy \(x>16\)

cho mình hỏi đề có sai ko ? \(P< \frac{1}{6}\)mình nghĩ sẽ hợp lí hơn 

18 tháng 3 2021

んuリ イ hãy thuận theo ý thầy :)) và nhớ chú ý đến ĐKXĐ

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

Để P > 1/6 thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)

<=> \(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)

<=> \(\frac{2\sqrt{a}-4}{6\sqrt{a}}-\frac{\sqrt{a}}{6\sqrt{a}}>0\)

<=> \(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)

Dễ thấy \(6\sqrt{a}>0\forall x>0\)

=> \(\sqrt{a}-4>0\)<=> \(\sqrt{a}>4\)<=> \(a>16\)

Vậy với a > 16 thì P > 1/6