Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)
\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(S_{min}=1\) khi \(a=b=c=1\)
GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)
Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)
Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
\(\Rightarrow P=1\)
Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)
\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)
TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ
TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)
\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)
Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)
Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ
Bài 1:phân tích đa thức thành nhân tử
a, 6x2 - 13x +6
= 6x2 - 9x - 4x +6
= (6x2 - 9x) - (4x - 6)
= 3x.(2x - 3) - 2.(2x - 3)
= (2x - 3).(3x-2)
b,x4+ x2- 2
= x4+ 2x2 - x2- 2
= x2.( x2 + 2) - (x2+ 2)
= (x2+ 2).(x2 - 12)
= (x2+ 2).(x2 - 1).(x2 + 1)
c, (x+y+z)3-x3-y3-z3
= x3 + y3 + z3 + 3(y+x)(z+x)(z+y) - x3 - y3 - z3
= 3(y+x)(z+x)(z+y)
2.
Áp dụng BĐT \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow VT=\sqrt{2x+1}+\sqrt{2y+1}+\sqrt{2z+1}\le\sqrt{3\left(2x+1+2y+1+2z+1\right)}\)
\(\Rightarrow VT\le\sqrt{3\left[2\left(x+y+z\right)+3\right]}=\sqrt{15}< \sqrt{16}=4\) (đpcm)
3.
\(VT=a^4+b^4+c^4\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\frac{1}{3}\left[3\left(ab+bc+ca\right)\right]^2=27\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)