Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
Đề sai, tớ sửa lại
Ta có :
\(A=2+2^2+..............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...........+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+.........+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...........+2^{59}.3\)
\(\Leftrightarrow A=3\left(2+2^2+..........+2^{59}\right)\)
\(\Leftrightarrow A⋮3\rightarrowđpcm\)
Lại có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+..........+2^{59}\left(1+2+2^2\right)\)
\(\Leftrightarrow A=2.7+2^4.7+............+2^{58}.7\)
\(\Leftrightarrow A=7\left(2+2^3+..........+2^{58}\right)\)
\(\Leftrightarrow A⋮7\rightarrowđpcm\)
Ta tiếp tục có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+..............+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+.............+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+............+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+.........+2^{57}\right)\)
\(\Leftrightarrow A⋮15\rightarrowđpcm\)
a) 4.(-5)2+(-2)3.25
= 4.25+(-8).25
=25.[4+(-8)]
=25.(-4)
=-100
b)\(15\dfrac{3}{7}-\left(\dfrac{7}{15}+9\dfrac{4}{7}\right)\)
= \(15\dfrac{3}{7}-\dfrac{7}{15}-9\dfrac{4}{7}\)
= \(\left(15\dfrac{3}{7}-9\dfrac{4}{7}\right)-\dfrac{7}{15}\)
=\(\left(14\dfrac{10}{7}-9\dfrac{4}{7}\right)-\dfrac{7}{15}\)
=\(5\dfrac{1}{7}-\dfrac{7}{15}\)
=\(\dfrac{36}{7}-\dfrac{7}{15}\)
=\(\dfrac{540}{105}-\dfrac{49}{105}\)
=\(\dfrac{491}{105}\)
\(\)a) 4.(-5)2+(-2)3.25
\(=4.5^2+\left(-2\right)^3.25\)
\(=4.25+\left(-8\right).25\)
\(=100+\left(-200\right)\)
\(=-100\)
b) \(15\dfrac{3}{7}-\left(\dfrac{7}{15}+9\dfrac{4}{7}\right)\)
\(=\dfrac{108}{7}-\left(\dfrac{7}{15}+\dfrac{67}{7}\right)\)
\(=\dfrac{108}{7}-\dfrac{1054}{105}\)
\(=\dfrac{566}{105}\)