Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để ΔABC=ΔDEF thì AB=EF; AC=DF
hoặc cũng có thể là BC=EF và \(\widehat{B}=\widehat{E}\)
Bài 2:
a: Xét ΔABH vuông tại H và ΔA'B'H' vuông tại H' có
\(\widehat{B}=\widehat{B'}\)
Do đó: ΔABH\(\sim\)ΔA'B'H'
b: AH/A'H'=AB/A'B'=k
Ta có
\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)
\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)
từ đó suy ra
\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)
a) Xét \(\Delta HAC\)và \(\Delta ABC\)có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
\(\Delta ABC\) có \(AD\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)
c) Xét \(\Delta CED\)và \(\Delta CAB\)có:
\(\widehat{CED}=\widehat{CAB}=90^0\)
\(\widehat{ECD}\) chung
suy ra: \(\Delta CED~\Delta CAB\)
\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)
\(\Rightarrow\)\(CE.AB=AC.ED\) (đpcm)
thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs
Câu 2: D 22,5
Câu 3:C Hai tam giác vuông cân thì luôn đồng dạng với nhau
Câu 4: D \(\frac{2}{3}\)
Câu 5: C \(\frac{AB}{MN}=3\)
Câu 1 đề bài sai