Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
38.
Gọi I là trung điểm AB và G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)
\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)
\(\Leftrightarrow MI=MG\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)
Tọa độ của C là (x; 2). Ta có: = (-2 – x; -1)
= (-2 – x; -3)
Tam giác ABC vuông tại C => ⊥ => . = 0
=> (-2 – x)(2 – x) + (-1)(-3) = 0
=> -4 + x2+ 3 = 0
=> x2 = 1 => x= 1 hoặc x= -1
Ta được hai điểm C1(1; 2); C2(-1; 2)
Đề bài sai bạn, vế trái là 1 cặp tọa độ, bên phải là độ dài, làm sao bằng nhau được?
a) Ta có \(A\left(2;-1\right)\), tọa độ điểm B đối xứng với A qua O là \(B\left(-2;1\right)\)
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Câu 2:
\(\overrightarrow{BK}=\left(x-5;6\right)\)
\(\overrightarrow{KA}=\left(3-x;-3\right)\)
\(KA=\sqrt{\left(3-x\right)^2+\left(-1-y\right)^2}=\sqrt{\left(x-3\right)^2+9}\)
\(AC=\sqrt{\left(6-3\right)^2+\left(1+1\right)^2}=\sqrt{13}\)
\(\overrightarrow{BK}\cdot\overrightarrow{KA}=KA^2+AC^2\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(3-x\right)+6\cdot\left(-3\right)=\left(x-3\right)^2+9-13\)
=>x^2-6x+9-4=3x-x^2-15+5x-18
=>x^2-6x+5=-x^2+8x-23
=>2x^2-13x+28=0
hay \(x\in\varnothing\)