K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

Sửa đề: x+y=1

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\)

\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)

=1

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)

8 tháng 3 2020

\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)

\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)

8 tháng 6 2017

a) \(B=\left[\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x-4}{x-3}-\frac{\left(x-1\right)}{x+3}\right]:\left(\frac{x+3-1}{x+3}\right)\)

ĐK: \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

\(=\left[\frac{21+x-4-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+2}{x+3}\right)\)

\(=\left[\frac{21+x-4-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\right]\times\left(\frac{x+3}{x+2}\right)\)

\(=\left(\frac{-x^2+5x+14}{x-3}\right)\left(\frac{1}{x+2}\right)\)

\(=\frac{-\left(x^2+2x-7x-14\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{-\left(x+2\right)\left(x-7\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{7-x}{x-3}\)

b) \(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Mà \(x\ne-3\)

\(\Rightarrow x=2\)

Thế \(x=2\)vào B ta được:

\(B=\frac{7-2}{2-3}=-5\)

c) \(B=\frac{7-x}{x-3}=\frac{-3}{5}\)

\(\Leftrightarrow5\left(7-x\right)=-3\left(x-3\right)\)

\(\Leftrightarrow35-5x+3x-9=0\)

\(\Leftrightarrow-2x=-26\)

\(\Leftrightarrow x=13\)

Vậy để \(B=\frac{-3}{5}\)thì \(x=13\)

d) B<0\(\Rightarrow\frac{7-x}{x-3}< 0\)

TH1: \(\hept{\begin{cases}7-x< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x>3\end{cases}\Rightarrow}x>7}\)

TH2: \(\hept{\begin{cases}7-x>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x< 3\end{cases}\Rightarrow}x< 3}\)

Để B<0 thì x>7 hoặc x<3

8 tháng 6 2017

a) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)         ĐKXĐ: x khác =-3; x khác -2

\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3x+6}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{x+2}\)

\(B=\frac{3}{x-3}\)

b) bước đầu tiên ta phải tìm x:

 \(\left|2x+1\right|=5\)

TH1: 2x+1=5                      TH2: 2x+1=-5

            2x=4                                 2x=-6

          x=2 (nhận)                             x=-3 (loại)

thay x=2 vào biểu thức B, ta được:

\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)

vậy B=-3 tại x=2

c) Để \(B=-\frac{3}{5}\)thì \(\frac{3}{x-3}=-\frac{3}{5}\)

\(\Leftrightarrow-3\left(x-3\right)=15\)

\(\Leftrightarrow x-3=-5\)

\(\Leftrightarrow x=-2\)

vậy \(x=-2\)thì \(B=-\frac{3}{5}\)

d) để B<0 thì \(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

vậy để B<0 thì x phải < 3 và x khác -3

1 tháng 6 2017

A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x 
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x 
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x 
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x) 
= - x+6/x+2

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)