Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)
\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)
Nên:
\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)
Vậy A = 1
Chúc bạn học tốt!!
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)
Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.
Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)
Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)
1b.Ta thấy:
\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)
Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất
Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))
Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0
2)
a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)
\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)
b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)
\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)
\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)là \(\dfrac{-1}{1}\) hay -1
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
đặt phân số trên là A
tử là
(1+2015/2)+...+(1+2/2015)+(1+1/2016)+1
=2017/2+....+2017/2015+2017/2016+2017/2017
=2017.(1/2+...+1/2015+1/2016+1/2017)
=>A=\(\dfrac{2017.\left(\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
Vậy A=2017
1. Ta có: \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(m\in Z\right)\)
\(B=\dfrac{2016^{2016}}{2016^{2016}-3}>\dfrac{2016^{2016}+2}{2016^{2016}-3+2}=\dfrac{2016^{2016}+2}{2016^{2016}-1}=A\)
Vậy A > B
2. \(\dfrac{1}{2016.2015}+\dfrac{1}{2015.2014}+\dfrac{1}{2014.2013}+...+\dfrac{1}{1.2}\)
= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
= \(1-\dfrac{1}{2016}\)
=\(\dfrac{2015}{2016}\)
1,
đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)
2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)
2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))
A=1-\(\dfrac{1}{2017}\)
A=\(\dfrac{2016}{2017}\)
vậy A=\(\dfrac{2016}{2017}\)
bài hay đấy để mk thử giải
à bạn xem lại câu a hộ mk với