K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(x-2\right)^2+\left(x-y\right)^6+3\ge3\)

\(\Leftrightarrow A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\le\dfrac{2003}{3}\)

Dấu '=' xảy ra khi x=y=2

b: \(B=-\left(2x+\dfrac{1}{3}\right)^6+3\le3\forall x\)

Dấu '=' xảy ra khi x=-1/6

c: \(C=\dfrac{x^{2016}+2015+2}{x^{2016}+2015}=1+\dfrac{2}{x^{2016}+2015}\le\dfrac{2}{2015}+1=\dfrac{2017}{2015}\)

Dấu '=' xảy ra khi x=0

3 tháng 11 2017

Vì /2x+1/ ≥ 0

=> /2x+1/ + 2017 ≥ 2017

=> 2016/ /2x+1/ +2017 ≤ 2016/2017

Vậy Bmax = 2016/2017 khi /2x+1/ = 0 => 2x+1 =0 => 2x=-1

=> x = -1/2

a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)

\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)

=>x=13/12

b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)

\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)

\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)

\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)

\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)

d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)

\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)

e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)

=>x+2020=0

hay x=-2020

a: \(\Leftrightarrow-\dfrac{3}{2x-3}=\dfrac{2}{5}-\dfrac{3}{2}-3=\dfrac{-41}{10}\)

=>41(2x-3)=30

=>82x-123=30

=>82x=153

hay x=153/82

b: \(\Leftrightarrow\left(x-1\right)\left(7-2x\right)=0\)

=>x=1 hoặc x=7/2

c: \(\Leftrightarrow\left(\dfrac{x+1}{2018}+1\right)+\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+10}{2009}+1\right)+\left(\dfrac{x+11}{2008}+1\right)+\left(\dfrac{x+12}{2007}+1\right)\)

=>x+2019=0

hay x=-2019

17 tháng 10 2017

de bai

18 tháng 10 2017

tìm x,y

21 tháng 1 2018

a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)

\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)

Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)

Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)

2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)

24 tháng 7 2017

|2x-1|=1,5

TH(1)2x-1=1,5

2x =1,5+1

2x =2,5

x =2,5 :2

x =1,25

TH(2) 2x-1=-1,5

2x =-1,5+1

2x =-0,5

x =-0,5:2

x =-0,25

các câu khác cứ tương tự bạn nhé

24 tháng 7 2017

b) \(7,5-\left|5-2x\right|=-4,5\)

\(\left|5-2x\right|=7,5+4,7\)

\(\left|5-2x\right|=12\)

th1 :\(5-2x=12\)

\(2x=5-12\)

\(2x=-7\)

\(x=-7:2\)

\(x=-3,5\)

th2: \(5-2x=-12\)

\(2x=5+12\)

\(2x=17\)

\(x=17:2\)

\(x=8,5\)

c) \(-3+\left|x\right|=-1\)

\(\left|x\right|=-1+3\)

\(\left|x\right|=2\)

th1: \(x=-2\)

th2 : \(x=2\)

d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)

\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)

th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)

\(x=\dfrac{7}{3}-\dfrac{1}{2}\)

\(x=\dfrac{11}{6}\)

th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)

\(x=\dfrac{7}{3}+\dfrac{1}{6}\)

\(x=\dfrac{-5}{2}\)

e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{9}{14}\)

th1 :\(x+1=\dfrac{9}{14}\)

\(x=\dfrac{9}{14}-1\)

\(x=\dfrac{-5}{14}\)

th2 : \(x+1=\dfrac{-9}{14}\)

\(x=\dfrac{-9}{14}-1\)

\(x=\dfrac{-5}{14}\)

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)

\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)

\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)