Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ADK\) và \(\Delta CNK\)
Có \(\widehat{AKD}=\widehat{CKN}\) (dđ)
\(\widehat{DAK}=\widehat{NCK}\) (slt của AD // BC )
\(\Rightarrow\) \(\Delta ADK\) \(\infty\) \(\Delta CNK\) (g.g)
b) Xét \(\Delta KAM\) và \(\Delta KCD\)
Có \(\widehat{AKM}=\widehat{CKD}\) (dđ)
\(\widehat{MAK}=\widehat{DCK}\) (slt của AB // CD)
\(\Rightarrow\) \(\Delta KAM\) \(\infty\) \(\Delta KCD\) (g.g)
\(\Rightarrow\dfrac{KA}{KC}=\dfrac{KM}{KD}\left(1\right)\)
Vì \(\Delta ADK\) \(\infty\) \(\Delta CNK\) (cmt)
\(\Rightarrow\dfrac{KA}{KC}=\dfrac{KD}{KN}\left(2\right)\)
(1)(2) \(\Rightarrow\dfrac{KM}{KD}=\dfrac{KD}{KN}\)
\(\Rightarrow KM\cdot KN=KD^2\)
c) Xét \(\Delta DAM\) và \(\Delta NBM\)
Có \(\widehat{DMA}=\widehat{NMB}\) (dđ)
\(\widehat{DAM}=\widehat{NBM}\left(=\widehat{BCD}\right)\)
\(\Rightarrow\) \(\Delta DAM\) \(\infty\) \(\Delta NBM\) (G.G)
\(\Rightarrow\dfrac{AD}{NB}=\dfrac{AM}{BM}\)
.\(\Rightarrow\) \(\dfrac{9}{NB}=\dfrac{6}{4}\)\(\Rightarrow NB=\dfrac{9\cdot4}{6}=6\left(cm\right)\)
Có NB + BC CN
\(\Rightarrow\) 6 + 9 = CN \(\Rightarrow\) CN = 15 (cm)
Vì \(\Delta KAM\) \(\infty\) \(\Delta KCD\) (cmt)
\(\Rightarrow\dfrac{S_{\Delta KAM}}{S_{\Delta KCD}}=\left(\dfrac{AM}{CD}\right)^2=\left(\dfrac{6}{10}\right)^2=\dfrac{36}{100}\)
3) 9h30phút-30phút=9h
Gọi x(km) là quãng đường từ A đến B (ĐK X>0)
Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)
Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)
Theo đề bài ta có phương trình :
\(\dfrac{x}{15}+\dfrac{x}{12}=9\)
Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)
Vậy quãng đường từ A đến B là 60 km
\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)
bài 1 : gọi quãng đường AB là x (x>0)
Đổi 48 phút = \(\dfrac{4}{5}\) giờ
theo đề bài ta có : \(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{6x}{300}-\dfrac{5x}{300}=\dfrac{240}{300}\)
\(\Rightarrow6x-5x=240\Leftrightarrow x=240\left(km\right)\)
Vậy AB =240km
Bài 2 : Gọi nua quãng đường AB là x (x>0)
theo đề bài ta có :\(\dfrac{x}{40}-\dfrac{x}{50}=1\)
\(\Leftrightarrow\dfrac{5x}{200}-\dfrac{4x}{200}=\dfrac{200}{200}\)
\(\Rightarrow x=200\left(km\right)\)
Vậy AB=200(km)
c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-4-x-1=3x-11\)
\(\Leftrightarrow2x-x-3x=-11+1+4\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Gọi quãng đường người đi xe máy từ A đến B là x(km)(x>0)
thời gian người đi xe máy từ A đến B là \(\dfrac{x}{40}h\)
thời gian người đi xe máy trở về là\(\dfrac{x}{30}h\)
Theo đầu bài ta có phương trình
Đổi 45p=\(\dfrac{3}{4}h\)
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow40x-30x=90\)
\(\Leftrightarrow10x=90\)
\(\Leftrightarrow x=9\left(tm\right)\)
Vậy quãng đường AB dài 9(km)
Gọi x (km/h) là vận tốc của người đi xe đạp (x>0)
Thời gian từ A đến B: \(\frac{60}{x}\)giờ
Theo bài ra ta có phương trình \(1+\frac{20}{60}+\frac{60-x}{x+4}=\frac{60}{x}\)
\(\Leftrightarrow1\frac{1}{3}+\frac{60-x}{x+4}-\frac{60}{x}=0\)
<=> \(1\frac{1}{3}+\frac{\left(60-x\right)x-60\left(x+4\right)}{x\left(x+4\right)}=0\)
<=> \(\frac{-x^2-240}{x\left(x+4\right)}=\frac{-4}{3}\)
<=> \(3x^2+720=4x^2+16x\)
<=> \(x^2+16x-720=0\)
<=> (x-20)(x+36)=0 \(\Leftrightarrow\orbr{\begin{cases}x=20\\x=-36\left(loại\right)\end{cases}}\)
Vậy vận tốc người đó là 20km/h
Gọi độ dài quãng đường AB là x ( km ) ( x> 0 )
Thời gian cả đi và về không tính thời gian nghỉ là 4,5 giờ
Thời gian đi từ A -B là \(\dfrac{x}{15}\left(h\right)\)
Thời gian về từ B - A là \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian cả đi lẫn về ( ko tính thời gian nghỉ ) là 4,5 giờ , ta có PT
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\\ \Leftrightarrow\dfrac{2x}{30}+\dfrac{x}{30}=\dfrac{135}{30}\\ \Leftrightarrow2x+x=135\\ \Leftrightarrow3x=135\\ \Leftrightarrow x=45\left(km\right)\)
Gọi quãng đường AB là x
Thời gian đi xe đạp là \(\dfrac{x}{15}\)
Thời gian đi xe máy là \(\dfrac{x}{30}\)
Thời gian đi và về là: 5,75-1,25=4,5
Theo đề bài ta có:
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\)
\(\Leftrightarrow\dfrac{2x+x}{30}=\dfrac{135}{30}\)
\(\Leftrightarrow3x=135\)
\(\Leftrightarrow x=45\left(km\right)\left(tm\right)\)
Câu 2/ \(\dfrac{157}{68}=2+\dfrac{21}{68}=2+\dfrac{1}{\dfrac{68}{21}}\)
\(=2+\dfrac{1}{3+\dfrac{5}{21}}=2+\dfrac{1}{3+\dfrac{1}{\dfrac{21}{5}}}\)
\(=2+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{5}}}\)
Vậy \(\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)