Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+2)(x-3)=0
<=> x+2=0
x-3=0
<=> x=-2
x= 3
b) 2x-x2=0
<=> x(2-x) =0
<=> x=0
2-x=0
<=> x=0
x=2
a)(x+2)(x-3)=0
=>\(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy x=-2 hoặc x=3
b) 2x-x2=0
=> x(2-x)=0
=>\(\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2
a/ \(\left(x+3y\right)\left(2x-y\right)\)
b/ \(\left(x^2+2\right)\left(x^2-2\right)\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b/ \(x^8-16=\left(x^4+4\right)\left(x^4-4\right)\)
\(=\left[\left(x^4+4x^2+4\right)-4x^2\right]\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left[\left(x^2+2\right)^2-4x^2\right]\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\left(x^2-2\right)\left(x^2+2\right)\)
Bài 1:
\(=3x^3y-6x^2y^2+15xy\)
Bài 2:
\(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
\(x^2+2xy-25+y^2\\ =\left(x^2+2xy+y^2\right)-5^2\\ =\left(x+y\right)^2-5^2\\ =\left(x+y-5\right)\left(x+y+5\right)\)
\(x^2+3x-10\)
\(=x^2-2x+5x-10\)
\(=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
hk tốt
^^
\(1,\\ a,=10x^2y\\ b,=x^2+7x\\ 2,\\ =x\left(3y+11z\right)\)