Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x^2-3x-2x+6}+\frac{1}{x^2-3x-4x+12}+\frac{1}{x^2-4x-5x+20}+\frac{1}{x^2-5x-6x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{1-5}-\frac{1}{1-4}+\frac{1}{1-4}-\frac{1}{1-3}+\frac{1}{1-3}-\frac{1}{1-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{x^2-8x+12}=\frac{1}{8}\)
\(\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow x=10\) hoặc \(x=-2\)
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)\(\frac{1}{x^2-2x-3x+6}+\frac{1}{x^2-4x-3x+12}+\frac{1}{x^2-4x-5x+20}+\frac{1}{x^2-6x-5x+30}=\frac{1}{8}\)
\(\frac{1}{x\left(x-2\right)-3\left(x-2\right)}+\frac{1}{x\left(x-4\right)-3\left(x-4\right)}+\frac{1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{1}{x\left(x-6\right)-5\left(x-6\right)}=\frac{1}{8}\)
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)dhjjhhjhhjj
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
Còn lại tự giải quyết nha
ĐKXĐ: \(x\ne\pm\frac{3}{2}\)
\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
phân tích mẫu thành nhân tử r` tách ra rút gọn như kiểu bài tính của lớp 5 ấy
bài tương tự : Câu hỏi của Lê Phương Oanh - Toán lớp 8 | Học trực tuyến (https://h-o-c-24.vn/hoi-dap/question/179719.html)
<=>2(x\(^2\)+8x+10)=0
<=>x\(^2\)+8x+10=0
<=>x\(^2\)+8x+16=26
<=>(x+4)\(^2\)=26
<=>x+4= \(\sqrt{26}\) hoặc -\(\sqrt{26}\)
<=>x=\(\sqrt{26}\)- 4 hoặc -\(\sqrt{26}\)-4
Vậy pt có tập nghiệm S={\(\sqrt{26}\)- 4 ;-\(\sqrt{26}\)- 4}
b) 1x2+5x+61x2+5x+6+1x2+7x+121x2+7x+12+1x2+9x+201x2+9x+20+1x2+11x+301x2+11x+30=2
<=>\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)+\(\frac{1}{\left(x+3\right)\left(x+4\right)}\)+\(\frac{1}{\left(x+4\right)\left(x+5\right)}\)+\(\frac{1}{\left(x+5\right)\left(x+6\right)}\)=2
<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+3}\)+\(\frac{1}{x+3}\)-\(\frac{1}{x+4}\)+\(\frac{1}{x+4}\)-\(\frac{1}{x+5}\)+\(\frac{1}{x+5}\)-\(\frac{1}{x+6}\)=2
<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+6}\)=2
<=>\(\frac{4}{\left(x+2\right)\left(x+6\right)}\)=\(\frac{2x^2+16x+24}{\left(x+2\right)\left(x+6\right)}\)
<=>4=2x\(^2\)+16x+24
<=>2x\(^2\)+16x+20=0
...