K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2023

Câu 1:

-2x²y + xy + 1 = -2x²y + (xy + 1)

Vậy -2x²y + xy + 1 được viết thành tổng của hai đa thức: -2x²y và xy + 1

Câu 2:

x²y² + 2xy - 3 = x²y² + (2xy - 3)

Vậy x²y² + 2xy - 3 được viết thành tổng của hai đa thức: x²y² và 2xy - 3

Câu 3:

-2x²y + xy + 1 = (xy + 1) - 2x²y

Vậy -2x²y + xy + 1 được viết thành hiệu của hai đa thức: xy + 1 và 2x²y

Câu 4:

x²y² - 2xy + 3 = (x²y² + 3) - 2xy

Vậy x²y² - 2xy + 3 được viết thành hiệu của hai đa thức: x²y² + 3 và 2xy

31 tháng 8 2023

trl mấy câu mik đăng nữa đk

 

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt

17 tháng 8 2018

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm

17 tháng 8 2018

\(a^2+b^2+2\ge2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)

Vậy ...