Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(ax^2+bx+c=0\) vô nghiệm
=> \(\Delta=b^2-4ac< 0\)
=> \(b^2< 4ac\)=> c>0
MÀ \(4ac\le\frac{\left(4a+c\right)^2}{4}\left(hđt\right)\)
=> \(\left(4a+c\right)^2>4b^2\)
Lại có a,b,c>0
=> \(4a+c>2b\)
=> \(a+b+c>3\left(b-a\right)\)=> \(\frac{a+b+c}{b-a}>3\left(đpcm\right)\)
\(x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
a, Giải phương trình \(x^2-x-2=0\)
\(=''-1''^2-4\times1\times''-2''=1+8\) lớn hơn \(0\)
\(\sqrt{\Delta}=\sqrt{9}=3\)
\(\Rightarrow x_1=-1;x_2=2\)
b, Vẽ đồ thị bảng số
- Hàm số \(y=x^2\)
- Hàm số \(y=x+2\)
+ Cho \(x=0\Rightarrow2\) được điểm A '' 0,2 ''
+ Cho \(x=2\Rightarrow y=0\) được điềm '' -2 ; 0 ''
Đồi thị hàm số
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2