K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Câu 1

X^3+Y3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2 -xy-yz-zx) =0. Nên chỉ có 2 TH

a) TH1: x+y+z = 0 --> x+y=-z; y+z=-x; z+x=-y (1):

Biến đổi P= (x+y)(y+z)(z+x)/xyz (2). Thay (1) vào (2) được P = -xyz/xyz = -1

b) TH2: x^2+y^2+z^2 -xy-yz-zx --> x=y=z. Thay vào biểu thức của P được P = (1+1)(1+1)(1+1)=8

Câu 3 

x^2+y^2 >= 2xy

y^2+z^2 >= 2yz

z^2+x^2>=2xz

Cộng 2 vế với vế cuae 3 BDT trên được 2(x^2+y^2+x^2)>=2(xy+yz+zx) --> x^2+y^2+x^2>= xy+yz+zx (1) Dấu = xảy ra khi x=y=z

Mặt khác A=(x+y+z)^2=x^2+y^2+x^2+2(xy+yz+zx)=9. Theo (1) A>=xy+yz+zx+2(xy+yz+zx) = 3(xy+yz+zx)

nên 9>=3(xy+yz+zx) --> 3>=xy+yz+zx. Vậy giá trị lớn nhất của P là 9. Khi đó x=y=z=1

Câu 3 : Chỉ là kẻ BD, CM ko thôi sao? thế thì M và D nằm đâu trên 2 cạnh AB và AC cũng đc? Như thế sẽ ko làm được bạn nhé
Câu 5 : 
\(2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2=36\)

\(\Leftrightarrow2y^2+2yz+2z^2+3x^2+2xy+2zx=36+2xy+2zx\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=36\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=36\)

\(\Leftrightarrow\left(x+y+z\right)^2=36-\left(x-y\right)^2-\left(x-z\right)^2\le36\)

\(\Leftrightarrow-6\le x+y+z\le6\)
_Minh ngụy_

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

22 tháng 11 2016

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1 

=> Max P=3

20 tháng 12 2016

x=1:z=1:y=1.tích cho tui nhé!hi!hi!hi!!!!!!!!!!!!!!!

23 tháng 4 2017

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1

25 tháng 5 2018

Ta có BĐT đúng sau:

x2 + y2 + z2 >= xy + yz + zx

<=> (x + y + z)2 >= 3(xy + yz + zx)

<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)

11 tháng 2 2017

Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk

22 tháng 12 2017

Với mọi x,y,z ta luôn có

(x-y)2+(y-z)2+(z-x)2\(\ge\)0

<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0

<=> x2+y2+z2-xy-yz-zx\(\ge\)0

<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0

<=> (x+y+z)2\(\ge\)3(xy+yz+zx)

<=> 9\(\ge\)3(xy+yz+zx)

<=> 3\(\ge\)xy+yz+zx = B

Dấu "=" xảy ra khi x=y=z=1

Vậy max B=3 <=> x=y=z=1

26 tháng 2 2019

đây mới là chuẩn nè

1.Hình thoi có chu vi bằng 20cm thì cạnh của nó bằng  cm.Câu 2:Biết hiệu bình phương của hai số tự nhiên lẻ liên tiếp bằng 40.Số lớn là Câu 3:Đường chéo của hình vuông có độ dài là 3 nhân căn bậc 2 của 2 cm . Cạnh của hình vuông là  Câu 4:Một hình vuông có cạnh bằng 4cm. Độ dài đường chéo hình vuông là a (cm).Khi đó  a^2=? Câu 5:Giá trị của x^4+ax^2+1 để  chia hết cho x^2+2x+1...
Đọc tiếp

1.Hình thoi có chu vi bằng 20cm thì cạnh của nó bằng  cm.

Câu 2:
Biết hiệu bình phương của hai số tự nhiên lẻ liên tiếp bằng 40.Số lớn là 

Câu 3:
Đường chéo của hình vuông có độ dài là 3 nhân căn bậc 2 của 2 cm . Cạnh của hình vuông là  

Câu 4:
Một hình vuông có cạnh bằng 4cm. Độ dài đường chéo hình vuông là a (cm).Khi đó  a^2=? 

Câu 5:
Giá trị của x^4+ax^2+1 để  chia hết cho x^2+2x+1 là  

Câu 6:
Số dư 1963^1964 khi chia  cho 7 là 

Câu 7:
Giá trị lớn nhất của biểu thức 5-8x-x^2  là 

Câu 8:
Giá trị nhỏ nhất của biểu thức (x-1)(x+2)(x+3)(x+6) là 

Câu 9:
Hình thang ABCD (AB//CD) có AB = 3,2cm, CD = 2,4 cm. Độ dài đường trung bình của hình thang là  cm.
(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 10:
Một hình thang có một cặp góc đối là 123 độ và 67 độ, cặp góc còn lại của hình thang đó là 
 (Nhập các góc theo số đo tăng dần,ngăn cách nhau bởi dấu “;”)

Các bạn giải nhanh dùm mình nha. Mình thành thật cảm ơn

0