K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

giup mình với mai đi hc rồi

23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

30 tháng 3 2018

Giups mk với mk dag cần gấp

22 tháng 5 2018

A B C H M N a) Xét tam giác AHN và tam giác ACH có :

Góc AHC chung

Góc ANH = Góc AHC ( = 90oC)

⇒ Tam giác AHN ~ tam giác ACH ( TH3)

b) Áp dụng định lý Py-ta-go vào tam giác ABH có :

BH2 = AB2 - AH2

BH = \(\sqrt{AB^2-AH^2}\)

BH = 9 ( BH > 0)

Tương tự , ta có : HC = 5 ( cm)

⇒ BC = BH + HC = 9 + 5 = 14 ( cm)

c) Ta có : tam giác AHN ~ Tam giác ACH ( TH3 )( Câu a)

\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)

⇒ AH2 = AN.AC ( 1)

Cmtt câu a) Tam giác AMH ~ Tam giác AHB

\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

⇒ AH2 = AM.AB ( 2)

Từ ( 1 ; 2) ⇒ AN.AC = AM.AB

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Xét tam giác AMN và tam giác ACB có :

Góc BAC chung

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\) ( cmt)

⇒ Tam giác AMN ~ Tam giác ACB ( TH2 )

d) Theo CM câu c) Ta có : \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

⇒ AM = \(\dfrac{AH^2}{AB}=\dfrac{48}{5}=9,6\left(cm\right)\)

Theo câu c) Lại có : Tam giác AMN ~ Tam giác ACB ( TH2)

\(\dfrac{AM}{AC}=\dfrac{MN}{BC}\)

⇒ MN = \(\dfrac{AM.BC}{AC}=\dfrac{9,6.14}{13}=10,34\left(cm\right)\)

22 tháng 5 2018

a) xét tam giac ahn và tam giác ach có

góc ahc = góc anh=90 độ

góc a chung

suy ra ta có tam giac ahn đồng dạng với tam giác ach(g.g)

11 tháng 5 2019

a) xét ta giác AHM và tam giác ACH có

góc AMH =góc AHC=90o

AH cạnh chug

góc A chug

=> tam giác AHM= tam giác ACH

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0