Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)
a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
x^5+y^5≥x^2.y^2(x+y)
x^5+y^5≥x^2.y^2(x+y)
ta có: x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−x.y^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2)x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−xy^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2). Vì (x−y)^2(x2−xy+y2)≥0(x−y)2(x^2−xy+y^2)≥0 nên ((x−y)^2(x^2−xy+y^2)+x^2y^2)≥x^2y^2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
x+y5≥x2.y2(x+y)x5+y5≥x2.y2(x+y)
thật vậy, ta có: x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2)x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2). Vì (x−y)2(x2−xy+y2)≥0(x−y)2(x2−xy+y2)≥0 nên ((x−y)2(x2−xy+y2)+x2y2)≥x2y2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)
d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)
Đáp án là A