Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
Vậy A=30.1=30
B=30.2=60
C=30.3=90
b) Số đo góc ngoài của B là:180-60=120
Số đo góc CBI là: 120:2=60
số đo góc BCI là: 180-90=90
=>Số đo góc AIB là: 180-90-60=30
Vậy góc AIB bằng 30 độ
Hình tự vẽ nha thông cảm ^_^
a) xét TG ABI và TG ẠCI
ta có AB=AC(gt)
góc BAI=góc IAC (gt)
Ai chung
vậy TG ABI=TG ACI(c-g-c)
a) Xét tam giác AIB và tam giác AIC có:
+ AI chung.
+ AB = AC (gt).
+ ^BAI = ^CAI (AI là phân giác ^BAC).
=> Tam giác AIB = Tam giác AIC (c - g - c).
b) Xét tam giác ABc có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AI là phân giác ^BAC (gt).
=> AI là đường cao (Tính chất các đường trong tam giác cân).
=> AI vuông góc BC (đpcm).
c) Xét tam giác ABC cân tại A có:
^BAC = 60 độ (gt).
=> Tam giác ABc đều.
=> Góc ABC = 60 độ (Tính chất tam giác đều).
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)