Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 dễ thì tự làm
Bài 2
\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0
\(\Rightarrow y=-x\)
\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)
Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
bạn đưa về 1 ẩn rồi giải nhen :
a) \(\frac{x}{y}=\frac{2}{3}\Rightarrow y=\frac{3x}{2}\)
Ta có : \(x.y=54\Leftrightarrow x.\frac{3x}{2}=54\)
\(\Rightarrow3x^2=108\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Từ \(3x^2y=y^2+2\left(4\right)\)\(\Rightarrow y^2=3x^2y-2\left(1\right)\)
\(3xy^2=x^2+2\left(2\right)\Rightarrow x^2=3xy^2-2\left(3\right)\)
Lấy (1) thay vào (2) ta đc:
\(3x.\left(3x^2y-2\right)=x^2+2\)
\(\Leftrightarrow9x^3y-6x-x^2-2=0\)
Lấy (3) thay vào (4) ta đc:
\(3y\left(3xy^2-2\right)=y^2+2\)
\(\Leftrightarrow9xy^3-6y-y^2-2=0\)
Đến đây sao khó hiểu thật
\(\frac{x^2}{y}+x=2\\\)và\(\frac{y^2}{x}+y=\frac{1}{2}\)
Xét 2 biểu thức trên ta có
\(\left(\frac{x^2}{y}+x\right).\left(\frac{y^2}{x}+y\right)=\frac{1}{2}.2\)
\(\frac{x^2}{y}.\frac{y^2}{x}+\frac{x^2}{y}.y+x.\frac{y^2}{x}+x.y=1\)
\(xy+x^2+y^2+xy=1\\\)
\(x^2+2xy+y^2=1\\\)
\(\left(x+y\right)^2=1\)
\(\hept{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)
\(\hept{\begin{cases}x=-y\\x=-1-y\end{cases}}\)