K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Bài 1. Ba số tự nhiên liên tiếp là \(a,a+1,a+2,\)  với \(a\ge0\). Tích của 2 trong 3 số ấy là các số \(a\left(a+1\right),\left(a+1\right)\left(a+2\right),a\left(a+2\right).\)  Theo giả thiết \(a\left(a+1\right)+\left(a+1\right)\left(a+2\right)+a\left(a+2\right)=242\to\left(a+1\right)\left(2a+2\right)+a^2+2a+1=243\)

suy ra \(\to2\left(a+1\right)^2+\left(a+1\right)^2=243\to3\left(a+1\right)^2=243\to\left(a+1\right)^2=81\to a+1=9\to a=8.\)

 

Bài 2.

a) CHẮC BẠN GÕ NHẦM ĐỀ BÀI.  Đề chính xác là

\(\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)

Đáp số là \(2^{2^5}+1=2^{32}+1\). Sở dĩ tôi chắc chắn như vậy, vì đây là phân tích nhân tử của số Fermat thứ 5.

b) Như trên ta biết rằng \(2^{32}+1=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)  nên không phải là số nguyên tố.

 

a, triển khai ra được:
A=(29+27+1)(223221+219217+214210+2927+1).A=(29+27+1)(223−221+219−217+214−210+29−27+1).
A=232+(223+223224)+(218217217)+(29+29210+1)A=232+(223+223−224)+(218−217−217)+(29+29−210+1)
A=232+1A=232+1
b, theo a có 232+1232+1là hợp số

27 tháng 5 2019

Bài 1 :

b) Ta thấy : \(2^{32}+1>10\)( 1 )

\(2^{32}=\left(2^2\right)^{16}=4^{16}⋮4\Rightarrow2^{32}+1:4\)dư 1

Do số chính phương chia 4 dư 0 hoặc 1 -> \(2^{32}+1\)là số chính phương ( 2 )

Từ ( 1 ) và ( 2 ) => \(2^{32}+1\)là hợp số không là số nguyên tố.

24 tháng 6 2015

mình có cách giải thế này ,bạn xem có đúng không nhé

a. Thực hiện nhân đa thức với đa thức rồi cộng các kết quả lại với nhau , ta được : 232+1

b. 232+1=(29+27+1).(223-221+219-217+214_210+29-27+1) nên 232+1 là hợp số

22 tháng 10 2024

2⁴.2⁵=2⁹

24 tháng 6 2017

bài 1) gọi tích 2 số nguyên liên tiếp là a(a+1)

Nếu a=3k => a(a+1)=3k(3k+1)=9k^2+3k chia hết cho 3

Nếu a=3k+1=> a(a+1)=3k+1(3k+1)=9k^2+3k+3k+1 chia 3 dư 1

Nếu a=3k+2 tương tự chia hết cho 3

Số 3^50+1 chia 3 dư 1(vô lý)

Vậy nó không phải là tích 2 số nguyên liên tiếp. CHÚC BẠN HỌC TỐT<3

Bài 1: Cho \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\left(a,b,c\ne0\right)\)Chứng minh rằng a+b không phải là số nguyên tốBài 2: Cho biểu thức f(x)=x^4+ax^3+bx^2+cx+d. Biết rằng f(1)=2016, f(2)=4096, f(3)=6048. Tính f(5)+f(-1)Bài 3: Tìm số dư khi \(x^6:x^2-x-1\)Bài 4: Sau khi điểm danh xong, bạn lớp trưởng nói: "Số các bạn có mặt ở đây bé hơn tích 2 lần số đó 9 đơn vị". Biết rằng số các bạn có mặt là số có hai chữ...
Đọc tiếp

Bài 1: Cho \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\left(a,b,c\ne0\right)\)Chứng minh rằng a+b không phải là số nguyên tố

Bài 2: Cho biểu thức f(x)=x^4+ax^3+bx^2+cx+d. Biết rằng f(1)=2016, f(2)=4096, f(3)=6048. Tính f(5)+f(-1)

Bài 3: Tìm số dư khi \(x^6:x^2-x-1\)

Bài 4: Sau khi điểm danh xong, bạn lớp trưởng nói: "Số các bạn có mặt ở đây bé hơn tích 2 lần số đó 9 đơn vị". Biết rằng số các bạn có mặt là số có hai chữ số

Bài 5:Cho 5 số tự nhiên bất kì. Biết được rằng tổng của 3 số bất kì luôn lớn hơn tổng hai số còn lại. C/m: không có số tự nhiên nào bé hơn 5

Bài 6: Trong một giải đấu bóng đá có 12 đội tham dự, thi đấu vòng tròn một lượt(hai đội bất kì đấu với nhau đúng 1 trận). Biết rằng mỗi đội đấu 4 trận. Chứng minh rằng luôn tìm được 3 đội bóng chưa đc đấu với nhau

P/S: NHỚ CÁC BẠN TRÌNH BÀY RÕ RÀNG CHO MÌNH NHÉ, THANKS

0