Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
để phương trình có 2 nghiệm phân biệt thỏa mãn thì
\(\Delta'>0\)
=>\(\left(m+1\right)^2-\left(2m+1\right)>0\)
\(\Leftrightarrow m^2+2m+1-2m-1>0\Leftrightarrow m^2>0\Leftrightarrow m\ne0\)
theo định lý vi et ta có\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+1\end{cases}}\)
ta có \(x_1^3+x_2^3=2019\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=2019\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+2x_1x_2+x_2^2-3x_1x_2\right)=2019\)
\(\Leftrightarrow\left(x_1+x_2\right).\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=2019\)
\(\Rightarrow2\left(m+1\right).\left[4\left(m+1\right)^3-3\left(2m+1\right)\right]=2019\)
\(=>2(m+1).\left[4m^2+8m+4-6m-3\right]=2019\)
\(\Rightarrow2\left(m+1\right)\left(4m^2+2m+1\right)-2019=0\)
\(\Rightarrow8m^3+4m^2+2m+8m^2+4m+2-2019=0\)
\(=>8m^3+12m^2+6m-2017=0\)
\(\Rightarrow m=5,8\left(\forall m\right)\)