Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(C=\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}.\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-\left(6x-x^2-9\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-6x+x^2+9}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3}{\left(x+3\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3.-x-3.x}{\left(x+3\right).\left(x-3\right)}=\frac{-6x}{\left(x+3\right)\left(x-3\right)}=\frac{-6x}{\left(x^2-9\right)}\)
a) \(\frac{1}{x+3}+\frac{x}{x^2-6x+9}\left(x\ne\pm3\right)\)
\(=\frac{1}{x+3}+\frac{x}{\left(x-3\right)^2}=\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)^2}+\frac{x^2+3x}{\left(x+3\right)\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2+3x}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3x+9}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3\left(x-3\right)}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3}{\left(x-3\right)\left(x+3\right)}\)
anhdun_•Ŧ๏áйツɦọς• giải a r nha , tớ giải b+c cho
\(b,\frac{2x}{x^2-9}-\frac{x-1}{x+3}\)
\(\frac{2x}{x^2-3^2}-\frac{x-1}{x+3}\)
\(\frac{2x}{\left(x+3\right)\left(x-3\right)}-\frac{x-1}{x+3}\)
\(\frac{2x-\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{2x-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{\left(2x+3x+x\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{6x-x^2-3}{\left(x+3\right)\left(x-3\right)}\)
a)có khả năng sai đề bài
b)Liệu có sai đề bài không
c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)
\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)
d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)
a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)
b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)
d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{1}{x^2+x+1}\)
e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x}{x+2y}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+\frac{-1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\frac{\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\frac{x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)