\(\frac{1}{15}\) + \(\frac{1}{35}\). . . 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)

\(=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

26 tháng 4 2018

\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(C=\frac{1}{3}-\frac{1}{51}\)

\(C=\frac{16}{51}\)

6 tháng 5 2018

Trả lời

\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow C=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{...1}{49\cdot51}\)

\(\Rightarrow2C=2\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\right)\)

\(\Rightarrow2C=\frac{2}{1\cdot3}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)

\(\Rightarrow2C=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2C=1-\frac{1}{51}\)

\(\Rightarrow2C=\frac{50}{51}\)

\(\Rightarrow C=\frac{50}{51}:2\)

\(\Rightarrow C=\frac{25}{51}\)

Vậy \(C=\frac{25}{51}\)

6 tháng 5 2018

\(=\frac{16}{51}\)

30 tháng 3 2019

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{2499}{2500}=\frac{3.8.15.2499}{4.9.16.2500}\)\(=\frac{14994}{24000}\)

(Thực hiện rút gọn)

# Học tốt #

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{2499}{2500}=\frac{3.8.15.2499}{4.9.16.2500}=\frac{3.15.2499}{4.9.2.2500}\)

Tự rút gọn tiếp đi

6 tháng 4 2019

=\(\frac{3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{49\cdot51}{50\cdot50}\)

=\(\frac{\left(2\cdot3\cdot...\cdot49\right)\cdot\left(3\cdot4\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)

=\(\frac{51}{50\cdot2}=\frac{51}{100}\)

6 tháng 4 2019

sai đè rồi bạn Hoàng Nguyễn Văn.ko hề có dấu 3 chấm.Chỉ là\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\).\(\frac{2499}{2500}\)thôi

7 tháng 5 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)

\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)

\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)

\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)

7 tháng 5 2019

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

1 tháng 8 2020

\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{16}{51}\)

\(\Rightarrow M=\frac{8}{51}\)

\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)

\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)

\(\Rightarrow N=-\frac{1007}{403}\)

5 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

5 tháng 5 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(B=\frac{510}{103}\)

\(a,\frac{3}{4}.\left(x+2\right)+\frac{1}{2}.\left(x-\frac{1}{2}\right)=\frac{15}{4}\)

\(\frac{3}{4}.x+\frac{3}{4}.2+\frac{1}{2}.x+\frac{1}{2}.\left(-\frac{1}{2}\right)=\frac{15}{4}\)

\(\left(\frac{3}{4}.x+\frac{1}{2}.x\right)+\frac{3}{2}-\frac{1}{4}=\frac{15}{4}\)

\(\left(\frac{3}{4}+\frac{1}{3}\right).x=\frac{15}{4}+\frac{1}{4}-\frac{3}{2}\)

\(\frac{5}{4}.x=\frac{5}{2}\)

\(x=\frac{5}{2}:\frac{5}{4}\)

\(x=2\)

\(b,3.x-\frac{3}{5}=0\)

\(3.x=0+\frac{3}{5}\)

\(3.x=\frac{3}{5}\)

\(x=\frac{3}{5}:3\)

\(x=\frac{1}{5}\)

\(c,\frac{-2}{3}.x-\frac{1}{3}.\left(2.x-3\right)=\frac{3}{2}\)

\(\frac{-2}{3}.x-\frac{2}{3}.x+1=\frac{3}{2}\)

\(\left(\frac{-2}{3}-\frac{2}{3}\right).x=\frac{3}{2}-1\)

\(-\frac{4}{3}.x=\frac{1}{2}\)

\(x=\frac{1}{2}:\left(\frac{-4}{3}\right)\)

\(x=\frac{-3}{8}\)

Học tốt