K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Có: \(\left(2018^{2018}+2017^{2018}\right)^{2017}< \left(2018^{2017}.2018+2017^{2017}.2018\right)^{2017}\)

\(=\left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)

\(=\left(2018^{2017}+2017^{2017}\right)^{2018}\)

NV
9 tháng 3 2019

\(A=\left(2018^{2017}+2017^{2017}\right)^{2018}\) ; \(B=\left(2018^{2018}+2017^{2018}\right)^{2017}\)

Ta có:

\(B=\left(2018.2018^{2017}+2017.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018.2018^{2017}+2018.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2018}=A\)

\(\Rightarrow B< A\)

21 tháng 7 2018

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

23 tháng 6 2017

không thể cm

21 tháng 1 2020

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

27 tháng 7 2019

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}=\frac{2017\sqrt{2017}+2018\sqrt{2018}}{\sqrt{2017}\cdot\sqrt{2018}}\)

\(=\left(\sqrt{2017}+\sqrt{2018}\right)\cdot\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2017\cdot2018}}\)

Ta thấy \(\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2018\cdot2017}}=\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\)

Áp dụng ĐBT Cô si thì \(\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}\ge2\Rightarrow\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\ge1\)

\(\Rightarrow\sqrt{2017}+\sqrt{2018} < \frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\)

16 tháng 6 2018

Đat 2017,5=t Ta có

\(\sqrt{\dfrac{\left(t+0,5\right)^2+\left(t-0,5\right)^2\cdot\left(t+0,5\right)^2+\left(t-0,5\right)^2}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\sqrt{\dfrac{t^2+t+0,25+t^4-0,5t^2+0,0625+t^2-t+0,25}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{\sqrt{t^4+1,5t^2+0,5625}}{t+0,5}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{t^2+0,75+t-0,5}{t+0,5}\\ =\dfrac{\left(t+0,5\right)^2}{t+0,5}\\ =t+0,5\)thay t=2017,5 vào suy ra A=2017,5+0,5=2018

16 tháng 6 2018

Giải:

\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\) (\(\left\{{}\begin{matrix}1>0\\2017^2>0\\\dfrac{2017^2}{2018^2}>0\end{matrix}\right.\Leftrightarrow1+2017^2+\dfrac{2017^2}{2018^2}>0\ne0\))

\(=1+2017+-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

\(=2018\)

Vậy ...

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

\(\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(=\sqrt{(1+2017)^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(\sqrt{2018^2-2.2018.\frac{2017}{2018}+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(=\sqrt{(2018-\frac{2017}{2018})^2}+\frac{2017}{2018}=2018-\frac{2017}{2018}+\frac{2017}{2018}=2018\)