Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=x^2+ax+b\)
Có \(f\left(x\right):\left(x+1\right)\) dư 7
\(\Rightarrow f\left(-1\right)=7\)
\(\Rightarrow1-a+b=7\)
\(\Rightarrow b-a=6\) (1)
Có \(f\left(x\right):\left(x-3\right)\) dư \(-5\)
\(\Rightarrow f\left(3\right)=-5\)
\(\Rightarrow9+3a+b=-5\)
\(\Rightarrow3a+b=-14\) (2)
Từ (1) và (2) ta có hpt
\(\left\{{}\begin{matrix}b-a=6\\3a+b=-14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a=-20\\b-a=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=1\end{matrix}\right.\)
Vậy....
P/s : không chắc lém :))
Gọi thương của phép chia \(x^3+ax+b\) cho \(x+1\)là \(A\left(x\right)\); cho \(x-2\)là \(B\left(x\right)\)
Ta có: \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)
\(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)
Theo định lý Bơ-du ta có:
\(f\left(-1\right)=-1-a+b=7\)
\(f\left(2\right)=8+2a+b=4\)
suy ra: \(a=-4;\) \(b=4\)
Vậy...