Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
a)hình như đề sai thì phải
sửa lại
\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)
=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)
=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)
Ta có:A=\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\frac{1}{2}\)\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\frac{1}{2}A-A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)-\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(-\frac{1}{2}A\)=\(\left(\frac{1}{2}^{100}\right)-\frac{1}{2}\)
\(-\frac{1}{2}A\)=\(-\frac{1}{2}\)
A=\(-\frac{1}{2}:\left(-\frac{1}{2}\right)\)
A=1
Chúc bạn học tốt!
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
Gọi \(3\) số cần tìm lần lượt là \(a,b,c (a,b,c \in R)\)
Suy ra tổng của \(3\) số đó là :\(35.3=105\)
Theo bài ra ta có: \(\left\{\begin{matrix}a+b+c=105\left(1\right)\\a=2b\left(2\right)\\b=2c\left(3\right)\end{matrix}\right.\)
Thay \((3)\) và \(\left(2\right)\) vào \((1)\) ta có:
\(\left(1\right)\Leftrightarrow2\cdot2c+2c+c=105\)
\(\Leftrightarrow4c+2c+c=105\)
\(\Leftrightarrow7c=105\Leftrightarrow c=15\) thay vào \((3)\) ta có:
\(\left(3\right)\Leftrightarrow b=2c\Rightarrow b=2\cdot15=30\) thay vào \((2)\) ta có:
\(\left(2\right)\Leftrightarrow a=2b=2\cdot30=60\)
Vậy 3 số đó là \(\left\{\begin{matrix}a=60\\b=30\\c=15\end{matrix}\right.\)
Ta có: A=1.2+2.3+3.4+4.5+..............+100.101
B=1.3+2.4+3.5+4.6+...............+100.102
Vậy A-B=(1.2+2.3+3.4+4.5+..............+100.101)-(1.3+2.4+3.5+4.6+...............+100.102)
=(1.2-1.3)+(2.3-2.4)+(3.4-3.5)+(4.5-4.6)+..........+(100.101-100.102)
=(-1)+(-2)+(-3)+(-4)+..........+(-100)
=-(1+2+3+4+.........+100) có (100-1)+1=100 số hạng
=\(-\left[\left(100+1\right).100:2\right]\)
=-5050
Chúc bạn học tốt!
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)
\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)
\(\Leftrightarrow x=-204\)
Ta có :
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)
=> x + 204 = 0
<=> x = - 204
Vậy pt có nghiệm x = - 204
\(1,\left[\left(-\dfrac{2}{5}\right)+\dfrac{1}{3}\right]-\left(\dfrac{3}{5}-\dfrac{1}{3}\right)=-\dfrac{2}{5}+\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{1}{3}\\ =\left(-\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{1}{3}+\dfrac{1}{3}\right)\\ =\dfrac{-2-3}{5}+\dfrac{1+1}{3}\\ =-\dfrac{5}{5}+\dfrac{2}{3}\\ =-1+\dfrac{2}{3}\\ =\dfrac{-3+2}{3}=-\dfrac{1}{3}\\ b,\left(\dfrac{3}{2}-\dfrac{3}{4}\right)-\left(0,25+\dfrac{1}{2}\right)\\ =\left(\dfrac{3}{2}-\dfrac{3}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{2}\right)\\ =\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}-\dfrac{1}{2}\\ =\left(\dfrac{3}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{3}{4}-\dfrac{1}{4}\right)\\ =\dfrac{3-1}{2}+\dfrac{-3-1}{4}\\ =\dfrac{2}{2}-\dfrac{4}{4}=1-1=0\)
1: =-2/5+1/3-3/5+1/3
=-1+2/3=-1/3
2: =3/2-3/4-1/4-1/2
=1-1=0