Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :
\(B=y^2-2y\left(1-y\right)+1-2y+y^2+y^2-8y+16+x^2+2x+1+2002\)
B=\(\left(y-1+y\right)^2+\left(y-4\right)^2+(x+1)^2+2002\)
Vi \(\left(2y-1\right)^2;\left(y-4\right)^2;\left(x+1\right)^2\) luon lon hon hoac bang 0 nen
ta co : minB=2002
\(VT=x^2+y^2+1+2xy+2x+2y+x^2=\left(x+y+1\right)^2+x^2\ge0\forall x;y\)
Đẳng thức xảy ra khi: \(\hept{\begin{cases}x=0\\x+y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1