K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`, đường cao `AH`.

Có: `(AB)/(AC)=3/7  = (3x)/(7x) (x>0)`

Áp dụng hệ thức lượng trong tam giác vuông ABC:

`1/(AH^2)=1/(AB^2)+1/(AC^2)`

`<=>1/(42^2)=1/(9x^2)+1/(49x^2)`

`=> x=2\sqrt58(cm)`

`=> AB=6\sqrt58, AC=14\sqty58 (cm)`

Áp dụng định lí Pytago:

`AB^2=HB^2+AH^2`

`<=> (6\sqrt58)^2=HB^2+42^2`

`=> HB=18(cm)`

`=> HC = AH^2 : HB = 98(cm)`

Vậy `HB=18cm, HC=98cm`.

21 tháng 7 2021

 

AC=14sqty58 là sao ạ

 

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

Gọi tam giác vuông đề bài cho là ΔABC vuông tại A có AH vuông góc BC

Theo đề, ta có: AB/AC=3/7

=>HB/HC=9/49

=>HB/9=HC/49=k

=>HB=9k; HC=49k

AH^2=HB*HC

=>9k*49k=12^2=144

=>k=4/7

=>HB=36/7cm; HC=28cm

14 tháng 6 2017

Gọi tam giác vuông đó là tam giác ABC (góc BAC = 900),

\(\dfrac{AB}{AC}=\dfrac{3}{4}\&BC=125\left(cm\right)\) , gọi \(AH\perp BC=\left\{H\right\}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=AC\dfrac{3}{4}\left(1\right)\)

Áp dụng định lí Py-ta-go vào tam giác vuông ABC, có:

\(AB^2+AC^2=BC^2\left(2\right)\)

Thay (1) vào (2) ta được:

\(\left(\dfrac{3}{4}AC\right)^2+AC^2=BC^2\Leftrightarrow AC^2\dfrac{9}{16}+AC^2=BC^2\Leftrightarrow AC^2\dfrac{25}{16}=BC^2\)

Mà BC = 125cm

\(\Rightarrow AC^2\dfrac{25}{16}=125^2\Leftrightarrow AC^2=10000\Leftrightarrow AC=100\left(cm\right)\)

Thay AC = \(100\) vào (1) ta được:

\(AB=\dfrac{3}{4}.100=75\left(cm\right)\)

Ta lại có: \(AB^2=BC.BH\) (định lí 1)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\left(cm\right)\)

mà BH + CH = BC \(\Rightarrow CH=BC-BH=125-45=80\left(cm\right)\)

Vậy AB = 75cm, AC = 100cm, BH = 45cm, CH = 80cm

13 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bài 2: 

Gọi tam giác vuông đo là ΔABC vuông tại A có AH là đường cao 

Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{49}\)

\(\Leftrightarrow HB=\dfrac{9}{49}HC\)

Ta có: \(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC^2=42^2:\dfrac{9}{49}=9604\)

\(\Leftrightarrow HC=98\left(cm\right)\)

\(\Leftrightarrow HB=42cm\)

6 tháng 4 2021

ko biết làm giúp bạn này với

NV
11 tháng 8 2021

Gọi 2 cạnh tam giác vuông là b và c với \(\dfrac{b}{c}=\dfrac{3}{4}\) \(\Rightarrow b=\dfrac{3}{4}c\)

Cạnh huyền là a với \(a=9,6\left(cm\right)\)

Áp dụng định lý Pitago:

\(b^2+c^2=a^2\Rightarrow\left(\dfrac{3}{4}c\right)^2+c^2=\left(9,6\right)^2\)

\(\Rightarrow c=7,68\left(cm\right)\)

\(b=\dfrac{3}{4}c=5,76\left(cm\right)\)

Áp dụng hệ thức lượng:

\(b^2=ab'\Rightarrow b'=\dfrac{b^2}{a}=3,456\left(cm\right)\)

\(c'=a-b'=6,144\left(cm\right)\)

18 tháng 8 2021

đường cao tương ứng với cạnh huyền =9,6 chứ ko phải cạnh huyền= 9,6