Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
a.
Ta co:
\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)
(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)
(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)
b.
Ta lai co:
\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)
Xet (3)
De phuong trinh dau co 4 nghiem thi PT(3) co nghiem
\(\Rightarrow\Delta^`>0\)
\(\Leftrightarrow4a^2>0\)
\(\Leftrightarrow a>0\)
\(\Rightarrow x_1=1+2a;x_2=1-2a\)
Tuong tu
(4)
\(a>0\)
\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)
\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)
\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)
\(\Rightarrow S< +\infty\)
a = 1 , b = - ( 2m + 1 ) , c = m - 3
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+4m+1-4m+12\)
\(=4m^2+13>0\forall m\)
Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m
Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)
\(A=3x_1x_2-2x_1x_2\ge4\)
\(A=3P-2P\ge4\)
\(A=P=m-3\ge4\Leftrightarrow m\ge7\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(\Delta=b^2-4ac=m^2+16\)
=> Pt luôn có 2 nghiệm phân biệt
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1\cdot x_2=\frac{c}{a}=-4\end{cases}}\)
Thay vào A ta được : \(A=\frac{2m+7}{m^2+8}\)
=> Min A = -1/8 khi m=-8