K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2019

\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow4ac-9a^2=a\Rightarrow c=\frac{9a+1}{4}\)

Mặt khác theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)

\(x_1^3+x_2^3=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)

\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)

\(\Leftrightarrow12a-9a-1=4a\Rightarrow a=-1\)

\(\Rightarrow b=3\) ; \(c=-2\)

\(P=6\)

NV
19 tháng 8 2020

\(-\frac{b}{2a}=-\frac{3}{2}\Leftrightarrow\frac{b}{2}=-\frac{3}{2}\Rightarrow b=-3\)

Phương trình (P): \(y=-x^2-3x+c\)

Thay tọa độ đỉnh \(x=-\frac{3}{2};y=\frac{1}{4}\) vào ta được:

\(\frac{1}{4}=-\frac{9}{4}+\frac{9}{2}+c\Rightarrow c=-2\)

\(\Rightarrow b+c=-5\)

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

11 tháng 7 2017

nhận thấy x=0 không là nghiệm,chia cả 2 vế của PT cho x2

\(PT\Leftrightarrow x^2+ax+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)

đặt \(x+\dfrac{1}{x}=k\Leftrightarrow x^2+\dfrac{1}{x^2}=k^2-2\)

\(PT\Leftrightarrow k^2-2+ak+b=0\)(*)

\(\Leftrightarrow k^2-2=-\left(ak+b\right)\Leftrightarrow\left(k^2-2\right)^2=\left(ak+b\right)^2\)

Áp dụng BĐT bunyakovsky:

\(\left(k^2-2\right)^2=\left(ak+b\right)^2\le\left(a^2+b^2\right)\left(k^2+1\right)\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}\)

Đến đây nếu use phương pháp miền giá trị thì sẽ ra \(a^2+b^2\ge0\).Tuy nhiên lại không tìm được x, có nghĩa là PT vô nghiệm, trái đề bài

để ý ràng \(k=x+\dfrac{1}{x}\ge2\)

\(a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}=k^2+1+\dfrac{9}{k^2+1}-6\)( chọn điểm rơi k=2)

\(=\left(\dfrac{25}{k^2+1}+k^2+1\right)-\dfrac{16}{k^2+1}-6\)

Áp dụng BĐT AM-GM và \(k\ge2\) ta có:

\(a^2+b^2\ge2.5-\dfrac{16}{5}-6=\dfrac{4}{5}\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{k}=\dfrac{b}{1}\\k=2\\x=1\end{matrix}\right.\)\(\Leftrightarrow a=2b\)

Thế vào PT đầu tìm ra a,b với x=1

P/s: thực ra x phải là \(\pm1\) nhưng a>0 nên chỉ xét x>0