Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{5x-2}{3}=\frac{5x-3x}{2}\)
\(\Leftrightarrow2.\left(5x-2\right)=3.\left(5x-3x\right)
\)
\(\Leftrightarrow10x-4=15x-9x\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
Vậy...
b. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\left(1\right)\)
MC = 36.
pt (1) <=>
\(\frac{3\left(10x+3\right)}{36}=\frac{36}{36}+\frac{4\left(6+8x\right)}{36}\)
=> 3.(10x+3) = 36 + 4(6+8x)
<=> 30x+9 = 36+24+32x
<=> -2x = 51
<=> x = \(\frac{-51}{2}\)
Vậy...
c. \(\frac{7x-1}{6}+2=\frac{16-x}{5}\left(2\right)\)
MC = 30.
pt (2) <=>
\(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> 5(7x-1) + 60x = 6(16-x)
<=> 35x-5 + 60x = 96-6x
<=> 101x = 101
<=> x = 1
Vậy...
d. \(\frac{3x+2}{2}-\frac{3x+1}{6}=5\) (3)
MC = 12.
pt (3)<=>
\(\frac{6\left(3x+2\right)}{12}-\frac{2\left(3x+1\right)}{12}=\frac{60}{12}\)
=> 6(3x+2) - 2(3x+1) = 60
<=> 18x+12 - 6x-2 = 60
<=> 12x = 50
<=> x = \(\frac{25}{6}\)
Vậy...
e. \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\) (4)
MC = 30.
pt (4) <=>
\(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> 6(x+4) - 30x + 120 = 10x - 15(x-2)
<=> 6x+24 - 30x + 120 = 10x - 15x+30
<=> -19x = -114
<=> x = \(\frac{114}{19}=6\)
Vậy...
\(a)\dfrac{{x + 1}}{{x - 2}} - \dfrac{{x - 1}}{{x + 2}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{{{x^2} - 4}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} + 3x + 2 - \left( {{x^2} - 3x + 2} \right) = 2{x^2} + 4\\ \Leftrightarrow 6x = 2{x^2} + 4\\ \Leftrightarrow - 2{x^2} + 6x - 4 = 0\\ \Leftrightarrow 2{x^2} - 6x + 4 = 0\\ \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow {x^2} - 2x - x + 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\left( {KTM} \right)\\ x = 1\left( {TM} \right) \end{array} \right. \)
Vậy \(x=1\)
\(b)\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}} \)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2 - 5x}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x = 2 - 5x\\ \Leftrightarrow 0x = 0\left( {VSN} \right) \)
Vậy phương trình vô số nghiệm
\(c)\dfrac{{x - 2}}{{2 + x}} - \dfrac{3}{{x - 2}} = \dfrac{{2\left( {x - 11} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2x - 22}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 4x + 4 - 3x - 6 = 2x - 22\\ \Leftrightarrow {x^2} - 9x + 20 = 0\\ \Leftrightarrow {x^2} - 4x - 5x + 20 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 4 = 0\\ x - 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 4\left( {TM} \right)\\ x = 5\left( {TM} \right) \end{array} \right. \)
Vậy \(x=4,x=5\)
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
Bài 1:
a/ \(x\ne1;2\)
\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}-\frac{7\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x-2-7x+7+1=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Rightarrow x=1\) (loại)
Vậy pt vô nghiệm
b/ \(x\ne\frac{3}{2}\)
\(\frac{2x+3}{2x-3}-\frac{3}{2\left(2x-3\right)}-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{10\left(2x+3\right)}{10\left(2x-3\right)}-\frac{15}{10\left(2x-3\right)}-\frac{4\left(2x-3\right)}{10\left(2x-3\right)}=0\)
\(\Leftrightarrow20x+30-15-8x+12=0\)
\(\Leftrightarrow12x+27=0\)
\(\Rightarrow x=-\frac{9}{4}\)
c/ \(x\ne\pm1\)
\(\frac{x+1}{x-1}-\frac{4}{x+1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow x^2+2x+1-4x+4+3-x^2=0\)
\(\Leftrightarrow-2x+8=0\)
\(\Rightarrow x=4\)
Bài 1:
d/\(x\ne\pm3\)
\(\frac{x-1}{x+3}-\frac{x}{x-3}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
\(\Rightarrow0=0\)
Vậy pt có vô số nghiệm \(x\ne\pm3\)
e/ \(x\ne\pm1\)
\(\frac{1}{x+1}+\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Leftrightarrow x^2-2x+1+2+3x-3=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\left(l\right)\end{matrix}\right.\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x-2}{5}-5\)
\(\Leftrightarrow\frac{5\left(5x+2\right)}{30}-\frac{10\left(8x-1\right)}{30}=\frac{6\left(4x-2\right)}{30}-\frac{150}{30}\)
\(\Leftrightarrow25x+10-80x+10=24x-12-150\)
\(\Leftrightarrow25x-80x-24x=-12-150-10-10\)
\(\Leftrightarrow-79x=-182\)
\(\Leftrightarrow x=\frac{182}{79}\).
Vậy tập nghiệm phương trình \(s=\left\{\frac{182}{79}\right\}\)
a)\(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
\(\Leftrightarrow\frac{3\left(3x+2\right)}{6}-\frac{3x+1}{6}=\frac{10}{6}+\frac{12x}{6}\)
\(\Leftrightarrow9x+6-3x+1=10+12x\)
\(\Leftrightarrow9x-3x-12x=10-6-1\)
\(\Leftrightarrow-6x=3\)
\(\Leftrightarrow x=\frac{-1}{2}\).
Vậy tập nghiệm phương trình \(S=\left\{\frac{-1}{2}\right\}\)
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
Well, it's ez, right? Hướng dẫn thôi nhé :> (*gớm, xài brain nhiều vào :V*)
a, ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
\(\frac{x}{2x+2}-\frac{2x}{x^2-2x-3}=\frac{x}{6-2x}\\ \Leftrightarrow\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\frac{x}{-2\left(x-3\right)}\\ \Leftrightarrow\frac{x\left(x-3\right)-4x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{-x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\Leftrightarrow...\)
Đến đây khử mẫu, giải PT và xét nghiệm với ĐKXĐ nhé (cứ thấy linh tinh với ĐKXĐ là cho outplay lun :>)
b, ĐKXĐ: \(x\notin\left\{2;3\right\}\)
\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\\ \Leftrightarrow\frac{-5}{-\left(x-2\right)\left(x-3\right)}+\frac{x+3}{2-x}=0\\\Leftrightarrow\frac{-5}{\left(2-x\right)\left(x-3\right)}=\frac{-\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}\Leftrightarrow...\)
c, ĐKXĐ: \(x\notin\left\{-2;1\right\}\)
\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3-\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\Leftrightarrow...\)
Thế thui, chúc bạn học tốt nha.
dù sao thì cũng cảm ơn cậu.
câu này tớ thật dự không biết thì mới hỏi mà chứ có phải là không dùng óc để suy nghĩ đâu. cậu học tốt nhé