K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

\(\begin{array}{l} \dfrac{{x - b - c}}{a} + \dfrac{{x - c - a}}{b} + \dfrac{{x - a - b}}{c} = 3\\ \Leftrightarrow \left( {\dfrac{{x - b - c}}{a} - 1} \right) + \left( {\dfrac{{x - c - a}}{b} - 1} \right) + \left( {\dfrac{{x - a - b}}{c} - 1} \right) = 3 - 1 - 1 - 1\\ \Leftrightarrow \dfrac{{x - a - b - c}}{a} + \dfrac{{x - a - b - c}}{b} + \dfrac{{x - a - b - c}}{c} = 0\\ \Leftrightarrow \left( {x - a - b - c} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) = 0\\ \Leftrightarrow x - a - b - c = 0\\ \Leftrightarrow x = a + b + c \end{array}\\ \boxed{NTT}\)

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 1:

(a)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:

\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)

\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)

\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)

Ta có đpcm.

(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.

Đặt

\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)

Khi đó:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

(c):

Theo BĐT tam giác:

\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)

\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)

Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Bài 2:

Áp dụng BĐT Cô-si cho các số dương:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)

19 tháng 3 2018

câu 1

\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)

\(\Leftrightarrow\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1=\dfrac{x-1}{1008}-2+\dfrac{x}{2017}-1\)

\(\Leftrightarrow\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{1008}+\dfrac{x-2017}{2017}\)

\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow x-2017=0\)

\(\Leftrightarrow x=2017\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

\(\frac{x-b-c}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)

\(\Leftrightarrow \frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)

\(\Leftrightarrow \frac{x-b-c-a}{a}+\frac{x-a-c-b}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow (x-a-b-c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0(1)\)

Vì $abc(ab+bc+ac)\neq 0\Rightarrow \frac{ab+bc+ac}{abc}\neq 0$

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\neq 0(2)$

Từ $(1);(2)\Rightarrow x-a-b-c=0\Rightarrow x=a+b+c$

Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:

(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)

.

16 tháng 5 2022

bf

30 tháng 7 2019

Đề bài: Giải bất phương trình :

a) x2 + 5x + 6 ≥ 0

⇔x2+5x ≥ -6

⇔x(x+5) ≥ -6

⇔ x ≥ -6 hoặc x+5 ≥ -6

⇔x ≥ -6 hoặc x ≥ -11

b) x2 - 9x + 20 ≤ 0

⇔x(x-9) ≤ -20

⇔ x ≤ 20 hoặc x-9 ≤ - 20

⇔ x ≤ 20 hoặc x ≤ -11

Thấy đúng thì tick nha

a) \(x^2+5x+6\ge0\)

\(\Leftrightarrow x\left(x+5\right)\ge-6\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-6\\x+5\ge-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-6\\x\ge-11\end{matrix}\right.\)

\(\Leftrightarrow x\ge-6\)

b) \(x^2-9x+20\le0\)

\(\Leftrightarrow x\left(x-9\right)\le-20\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-20\\x-9\le-20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-20\\x\le-11\end{matrix}\right.\)

\(\Leftrightarrow x\le-20\)