\(a,b\ge0\Rightarrow\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi a = b.

Cauchy-shwarz:

\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)

\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

14 tháng 1 2018

Hằng đẳng thức thứ 2 à

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\) Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\) Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng...
Đọc tiếp

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)

Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)

Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất

Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:

\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)

Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)

Bài 5, Tìm giá trị x,y,z để biểu thức

\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất

Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)

Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)

0
15 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

~ Học tốt!~

Đáp án đề thi vòng 1: Bài 1: a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\) Vậy \(A=\dfrac{1}{2}\) b,...
Đọc tiếp

Đáp án đề thi vòng 1:

Bài 1:

a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)

Vậy \(A=\dfrac{1}{2}\)

b, \(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)

\(=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)

\(=\dfrac{9}{10}\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{1999.2009}\right)\)

\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{1999}-\dfrac{1}{2009}\right)\)

\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{2009}\right)\)

\(=\dfrac{200}{2009}\)

Vậy \(B=\dfrac{200}{2009}\)

Bài 2:

a, Giải:

Ta có: \(\left(\dfrac{b}{3c}\right)^3=\dfrac{a}{b}.\dfrac{b}{3c}.\dfrac{c}{9a}=\dfrac{1}{27}\Rightarrow\left(\dfrac{b}{3c}\right)^3=\left(\dfrac{1}{3}\right)^3\)

\(\Rightarrow\dfrac{b}{3c}=\dfrac{1}{3}\Rightarrow b=c\left(đpcm\right)\)

b, Ta có: \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+\dfrac{2}{4.6}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)

\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2014.2016}\right)\right]\)

\(=\dfrac{1}{2}\left[\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\right]\)

\(=\dfrac{1}{2}\left[\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\right]\)

\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\dfrac{3}{4}-\dfrac{1}{2.2015}-\dfrac{1}{2.2016}< \dfrac{3}{4}\)

\(\Rightarrowđpcm\)

Bài 3:
a, \(VP=\left(x+y\right)\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2=VT\)

\(\Rightarrowđpcm\)

b, Giải:

a, b, c là độ dài các cạnh của một tam giác nên \(a+b>c,a+c>b,b+c>a\) ( bất đẳng thức tam giác )

\(\Rightarrow a+b-c>0,a-b+c>0,-a+b+c>0\) (*)

Ta có: \(\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b+c-a\right)\left(b-c+a\right)\le b^2\\\left(c+a-b\right)\left(c-a+b\right)\le c^2\end{matrix}\right.\)

Kết hợp (*) ta có: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\left(đpcm\right)\)

Vậy \(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)

Bài 4:

A B C I D E

Giải:

Vẽ \(CD\perp BI\) tại D, CD cắt AB tại E

\(\Delta BCE\) cân tại B do BD vừa là đường cao, vừa là đường phân giác

\(\Rightarrow BD\) cũng là đường trung tuyến của \(\Delta BCE\)

\(\Rightarrow BE=BC,CE=2CD\)

Mặt khác: \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)\)

\(=180^o-\left(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\right)=135^o\)

\(\Rightarrow\widehat{DIC}=45^o\Rightarrow\Delta DIC\) vuông cân tại D

Do đó \(CI^2=DI^2+CD^2=2CD^2\)

Ta có: \(AE=BE-AB=BC-AB\)

\(\Delta ACE\) vuông tại A \(\Rightarrow CE^2=AE^2+AC^2\)

\(\Rightarrow4CD^2=\left(BC-AB\right)^2+AC^2\)

\(\Rightarrow2CI^2=\left(BC-AB\right)^2+AC^2\)

\(\Rightarrow CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\left(đpcm\right)\)

Vậy \(CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\)

Bài 5:

a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2013\right|+\left|x-2016\right|=\left|x-2013\right|+\left|2016-x\right|\ge x-2013+2016-x=3\)

Kết hợp với giả thiết, ta có:

\(\left|x-2014\right|+\left|y-2015\right|\le0\)

Điều này chỉ xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2014\right|=0\\\left|y-2015\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)

Thay vào \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\), ta thấy thỏa mãn

Vậy \(x=2014,y=2015\)

b, Giải:

Giả sử không có hai số nào trong 2013 số tự nhiên \(a_1,a_2,...,a_{2013}\) bằng nhau

Do đó, ta có: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2013}}\le1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}< 1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1006=1007\)

Mâu thuẫn với giả thiết

Vậy ít nhất hai trong 2013 số tự nhiên đã cho bằng nhau.

15
29 tháng 5 2017

thầy @phynit sửa chỗ \(\left(BC-AB^2\right)\) thành \(\left(BC-AB\right)^2\) giúp em với ạ!

29 tháng 5 2017

bài 1, 2b, 3a, 5b em lm đúng mà, s đc 6 nhể, trình bày sai chỗ nìu ạ

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

17 tháng 6 2017

Bài 1:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)

\(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)

\(\Rightarrowđpcm\)

d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)

\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

e, Sai đề

f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)

\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

17 tháng 6 2017

Hâm mộ :)))))

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)

\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)

\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)

\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)

b )

\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)

\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)

c)

\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)

\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 3:

a) Ta thấy:

\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)

Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)

b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)

Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)

12 tháng 7 2017

BÀI 1:

\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)

\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky

Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)

12 tháng 7 2017

Bài 2:

Vì a=b+c nên ad=(b+c)d=bd+cd (1)

Vi c=\(\dfrac{bd}{b-d}\)nen \(bd=\)c.(b-d)=bc-cd hay bc=bd+cd (2)

Từ (1),(2) =>ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)