Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Do ΔABC = ΔDEH nên:
AB = DE = 5 cm
AC = DH= 6 cm
+) Vì chu vi tam giác DEH là 19 cm nên:
DE + EH + DH = 19
Thay số: 5 + EH +6 = 19 suy ra: EH = 8 cm
Vậy độ dài các cạnh của tam giác DEH là: DE = 5cm; DH = 6cm; EH = 8cm.
A B C K
Vì ΔAKB = ΔAKC (giả thiết)
Suy ra: góc AKB = góc AKC (hai góc tương ứng)
Mà: góc AKB + góc AKC = 180o
\(\Rightarrow\) Góc AKB = góc AKC = 90o
Do đó: AK \(\perp\) BC.
Ta có : \(M\) là trung điểm của \(AB\) \(\Rightarrow MA=MB\)
Vậy \(MA=MB\)
Có thể bạn Trang Trần đã biết đáp án nhưng phải trình bày ra sao thôi, thỉnh thoảng mình cũng như vậy mà
+\(\Delta\)ABD vuông tại A => \(\widehat{ABD}\)+\(\widehat{ADB}\)=90
Mà \(\widehat{ADB}\) = \(\widehat{CDE}\) đối đỉnh
=>\(\widehat{ABD}\)+\(\widehat{CDE}\) = 90 (1)
+\(\Delta\)CBE vuông tại C =>\(\widehat{CBE}\)+\(\widehat{CEB}\)=90
Mà \(\widehat{CBE}\) = \(\widehat{ABD}\) ( BD là phân giác)
=> \(\widehat{CEB}\)+\(\widehat{ABD}\) = 90 (2)
(1)(2) => \(\widehat{CEB}\) =\(\widehat{CDE}\) hay \(\widehat{CED}\)=\(\widehat{CDE}\) ( dpcm)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó:ΔOAD=ΔOCB
Suy ra: AD=BC
b: Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó:ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó:ΔOEB=ΔOED
SUy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc BOD
d: Xét ΔOBD có OA/OB=OC/OD
nên AC//BD
ĐỀ SAI
nếu là phân góc góc ngoài đỉnh C thì lm sao mà cắt AB tại E
=> đề đúng pải là phân giác góc C
Đề mình chép đúng đấy bạn, không sai đâu! Bạn giải cho mình được không?
Tam giác ABC = Tam giác DEH (gt)
=> AB = DE (2 cạnh tương ứng) mà AB = 5 (cm) => DE = 5 (cm)
AC = DH (2 cạnh tương ứng) mà AC = 6 (cm) => DH = 6 (cm)
SDEH = 19
DE + DH + EH = 19
5 + 9 + EH = 19
EH = 19 - 9 - 5
EH = 5 (cm)
mình ko hiểu sao DH= 6cm mà, sao lại là 9cm?