K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta có:

$A=x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz$

$=(x+y)^3+z^3-3xy(x+y)-3xyz$

$=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xyz(x+y+z)$

$=(x+y+z)[(x+y)^2-z(x+y)+z^2-3xyz]$

$=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)$
a)

Nếu $x+y+z=0\Rightarrow A=0.(x^2+y^2+z^2-xy-yz-xz)=0$

b)

Nếu $A=0\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0$

$\Leftrightarrow x+y+z=0$ hoặc $x^2+y^2+z^2-xy-yz-xz=0$

Nếu $x+y+z=0$ thì điều ngược lại đúng

Nếu $x^2+y^2+z^2-xy-yz-xz=0$ thì $x=y=z$ (như bài trước đã CM). Như vậy trường hợp này không đủ cơ sở kết luận $x+y+z=0$

Tổng hợp 2 TH lại thì khi $A=0$ thì chưa chắc $x+y+z=0$, tức là điều ngược lại không đúng.

23 tháng 9 2020

Akai Haruma, giảng giúp mk vs

23 tháng 9 2020
https://i.imgur.com/qQtX9Pr.jpg
23 tháng 9 2020

Này Miyuki Misaki, cho mk hỏi tại sao ở trên có 3xy.(x+y+z) mà ở dưới lại có -3xy là sao??? Giải thích giúp mk nha<3

12 tháng 10 2018

1;\(A=x^3+y^3+z^3-3xyz\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(A=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(A=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

2;Nếu A = 0

Điều ngược lại đúng khi x^2+y^2+z^2-xy-yz-xz khác 0

12 tháng 10 2018

Ta đi chứng minh A phụ thuộc vào x+y+z

\(A=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Mà x^2+y^2+z^2-xy-yz-xz>0

nên  x+y+z =0 thì A=0

20 tháng 8 2019

\(A=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3y^2x=\left(x+y+z\right)\left(x^2+2xy-xz-zy+z^2+y^2\right)-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(xet:x=y=z=1\Rightarrow A=1+1+1-3=0\Rightarrow dieunguoclaichuachacdadung\)

17 tháng 4 2020

nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0