Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+a^2c-abc+b^2c+b^3=0\)
\(=a^2.\left(a+b+c\right)-a^2b-abc+b^2c+b^3\)
\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab^2-abc-a^2b\)
\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left(a^2-ab+b^2\right)\)
\(=0\) ( Đpcm )
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc+ac+ab}{abc}=0\)
\(\Leftrightarrow ab+bc+ca=0\) (*)
Lại có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
Kết hợp với (*) \(\Leftrightarrow a^2+b^2+c^2=1\)(đpcm)
Ta có: \(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\left(1\right)\)
Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Rightarrow2.\left(ab+bc+ca\right)=0\left(2\right)\) ( Nhân 2 vế cho 2abc khác 0 )
Lấy \(\left(1\right)\) trừ \(\left(2\right)\) vế theo vế ta được \(a^2+b^2+c^2=1\)
\(\Rightarrow\) Đpcm.
\(\sum\frac{1}{1+a^3+b^3}\le\sum\frac{1}{1+ab\left(a+b\right)}=\sum\frac{1}{ab\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)
\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+ac-b^2-bc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)\left(a-b\right)+c\left(a-b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a+b+c\right)=0\)
=>a+b+c=0