K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Bài 3) Thiếu đề

Bài 4) Xét ΔMNK và ΔHIK ta có:

NK = IK (GT)

\(\widehat{MKN}=\widehat{HKI}\) (đối đỉnh)

MK = HK (GT)

=> ΔMNK = ΔHIK (c - g - c)

=> \(\widehat{MNK}=\widehat{HIK}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc so le trong

=>MN //IH

Bài 5) Xét ΔAMB và ΔDMC ta có:

AM = MD (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

BM = MC (M là trung điểm của BC)

=> ΔAMB = ΔDMC (c - g - c)

=> AB = CD (2 cạnh tương ứng) (1)

Xét ΔABH và ΔEBH ta có:

AH = HE (GT)

\(\widehat{AHB}=\widehat{EHB}\left(=90^0\right)\)

BH: cạnh chung

=> ΔABH = ΔEBH (c - g - c)

=> AB = BE (2 cạnh tương ứng) (2)

Từ (1) và (2) => CD = BE

28 tháng 3 2020

thanks nhiều ạ!!!!

19 tháng 8 2016

A C B H M N I

a) Xét ΔAMH và ΔNMB:

  • MB=MH(M là trung điểm BH)
  • Góc HMA= Góc BMN
  • MA=MH(gt)

Vậy   ΔAMH = ΔNMB(c.g.c)

Suy ra Góc AHM= Góc MBN(2 góc tương ứng)

Mà Góc AHM=90o(AH là đường cao ΔABC)

Nên Góc MBN=90o

Vậy NB vuông góc với BC

b) Ta có: ΔAMH = ΔNMB(cmt)

Nên AH=NB          

Vì AH là đường cao ΔABC cân tại A

Nên AH<AB         

Vì AH<AB(cmt)

Mà AH=NB

Nên NB<AB

c) và d) bạn đợi tí nhé

 

 

19 tháng 8 2016

bạn làm hộ mk yk d dc k

 

29 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

29 tháng 12 2021

bạn biết làm câu c ko mình không biết làm câu c 

24 tháng 2 2020

A B C H E D M S N K I

Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath

c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE  

=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE 

=> \(\Delta\)ABE cân tại B 

=> AB = BE 

d) Ta có: SN vuông AH ; BC vuông AH 

=> SN //BC 

=> NK //MC 

=> ^KNI = ^MCI 

mặt khác có: NK = MC ; IN = IC ( gt)

=> \(\Delta\)NIK = \(\Delta\)CIM

=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o

=> ^CIM + ^KIC = 180o

=> ^KIM = 180o

=>M; I ; K thẳng hàng

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

Bài 1: Cho ΔABC, kẻ AH vuông góc với BC (H ∈ BC). Trên tia đối của tia HA, lấy điểm K sao cho HK = HA. Nối KB, KC. Tìm các cặp tam giác bằng nhau trong hình vẽ Bài 2: Cho ΔABC có góc A = 90độ, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác góc B cắt AC ở D. a) Chứng minh: ΔABD = ΔEBD b) Chứng minh: DA = DE c) Tính số đo góc BED Bài 3: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi...
Đọc tiếp

Bài 1: Cho ΔABC, kẻ AH vuông góc với BC (H BC). Trên tia đối của tia HA, lấy điểm K sao cho HK = HA. Nối KB, KC. Tìm các cặp tam giác bằng nhau trong hình vẽ
Bài 2: Cho ΔABC có góc A = 90độ, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác góc B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD
b) Chứng minh: DA = DE
c) Tính số đo góc BED
Bài 3: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.
a) Chứng minh: AC = DB và AC//DB
b) Chứng minh: AD = CB và AD//CB
c) Chứng minh: góc ACB = góc BDA
d) Vẽ CH AB tại H.Trên tia đối của tia OH lấy điểm I sao cho OI = OH. Chứng minh: DIAB

Bài 4: Cho tam giác ABC có góc A= 50độ. Vẽ đoạn thẳng AI vuông góc và bằng AB (I và C khác phía đối với AB). Vẽ đoạn thẳng AK vuông góc và bằng AC (K và B khác phía đối với AC).
Chứng minh rằng: a) IC = BK
b) ICBK Bài 5: Cho ΔABC có ba góc nhọn. Vẽ BDAC tại D, CEBA tại E. Trên tia đối của tia BD lấy điểm F sao cho BF = AC, trên tia đối của tia CE lấy điểm G sao cho CG = AB. Chứng minh: AF = AG và AF ⊥AG Bài 6: Cho góc bẹt xOy có tia phân giác Ot. Trên tia Ot lấy hai điểm A, B ( A nằm giữa O và B). Lấy điểm C ϵ Ox sao cho OC = OB lấy điểm D ∈ Oy sao cho OD = OA a) Chứng minh AC = BD và AC⊥BD b) Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh OM = ON

c) Tính các góc của tam giác MON
d) Chứng minh: AD⊥BC
Bài 7: Cho tam giác ABC có ba góc nhọn. Vẽ AH⊥BC (H ∈ BC). Vẽ HI⊥AB tại I, vẽ HK⊥AC tại K. Lấy E, F sao cho I là trung điểm của HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N.
a) Chứng minh MH = ME và chu vi ΔMHN bằng EF
b) Chứng minh AE = AF
c) Nếu biết góc BAC = 60độ . Khi đó hãy tính các góc của tam giác AEF
(Chu vi của một tam giác bằng tổng độ dài 3 cạnh của tam giác)

Bài 8: Cho tam giác ABC, Điểm D thuộc cạnh BC. Kẻ DE//AC (E ∈ AB), kẻ DF//AB (F ∈ AC) Gọi I là trung điểm của EF. Chứng minh I là trung điểm của AD
Bài 9: Cho góc xOy khác góc bẹt có Ot là tia phân giác. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B
a. Chứng minh OA = OB
b. Lấy điểm C nằm giữa O và H. Chứng minh CA = CB
c. AC cắt Oy ở D. Trên tia Ox lấy điểm E sao cho OE = OD. Chứng minh B, C, E thẳng hàng.

Bài 10: Cho tam giác ABC. Các đường phân giác của các góc ngoài tại B và tại C cắt nhau ở K. Qua K kẻ đường thẳng vuông góc với AB, cắt đường thẳng AB ở E. Qua K kẻ đường thẳng vuông góc với AC, cắt đường thẳng AC ở F. Chứng minh rằng KE = KF Bài 11: Cho ΔABC có góc A = 60độ. Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E và cắt BD ở I. Chứng minh IE = ID. Bài 12: Cho tam giác ABC có góc A= 40độ, AB = AC, H là trung điểm của BC a) Tính góc ABC, góc ACB và chứng minh AH⊥BC và AH là phân giác góc BAC b) Đường thẳng d đi qua trung điểm của AC và vuông với AC cắt tia CB tại M Tính góc MAH c) Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh AM = CN d) Vẽ CI⊥MN tại I. Chứng minh I là trung điểm MN e) AH cắt đường thẳng d tại K. Chứng minh C, I, K thẳng hàng Bài 13: Cho tam giác ABC. Tia phân giác góc B cắt cạnh AC tại D. Qua D kẻ đường thẳng song song với BC, nó cắt cạnh AB tại E. Chứng minh tam giác EBD cân. Bài 14: Một góc của tam giác cân bằng 40độ. Tính các góc còn lại. Bài 15: Cho ΔABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD = AE a) Chứng minh DB = EC b) Gọi O là giao điểm của DB và EC. Chứng minh DOBC và DODE là các tam giác cân. c) Chứng minh DE // BC. Bài 16: DABC đều. Gọi D,E,F là 3 điểm lần lượt nằm trên các cạnh AB, BC, CA sao cho AD = BE =CF a) Chứng minh rằng DDEF là tam giác đều. b) Gọi M, N, K là 3 điểm lần lượt nằm trên các tia đối của các tia AB, BC,CA sao cho AM = BN = CK. Chứng minh DMNK là tam giác đều. Bài 17: Cho điểm M nằm trên đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMCBMD a) Chứng minh rằng AD = CB b) Gọi I , K theo thứ tự là trung điểm của AD và CB. Tam giác MIK là tam giác gì ? Bài 18: Cho DABC vuông cân tại A . Trên tia đối của tia BA lấy điểm E sao cho BE = BC a) Tính số đo các góc của DAEC b) Trên tia đối của tia BC lấy điểm F sao cho BF = BC. Tính số đo các góc của DCEF Bài 19: Cho ΔABC. Bên ngoài ΔABC, vẽ các tam giác đều ΔABM và ΔACN. a) Chứng minh BN = CM. b) Gọi K là giao điểm của BN và CM. Tính số đo góc MKB. Bài 20: Cho ΔABC vuông tại A, có AH⊥BC tại H . Vẽ HD⊥AB tại D, HE⊥AC tại E a) Chứng minh AD = EH, AE = DH, AH = DE b) Gọi I là giao điểm của DE và AH. Chứng minh IA = IE = IH = ID c) Chứng minh góc ADE = góc ACB d) Vẽ AM⊥DE tại M, tia AM cắt BC tại N. Chứng minh AN = CN Bài 21: Cho ΔABC có. Tia phân giác của góc C cắt AB tại D. Trên tia đối của tia CA lấy E sao cho CE = CB a) Chứng minh rằng CD//EB b) Tia phân giác góc E cắt đường thẳng CD tại F. Vẽ CK⊥EF tại K. Chứng minh CK là tia phân giác góc ECF
P/s: Vẽ được hình thì càng tốt ạ, các bạn biết bài nào thì giúp mình với :((
0