Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
a: \(=\left|\dfrac{3}{2}-\dfrac{7}{3}\right|^2+\dfrac{1}{4}=\dfrac{17}{18}\)
b: \(=\left|1-2-\dfrac{1}{3}\right|+\dfrac{5}{6}=1+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{13}{6}\)
c: \(=\left|\dfrac{3}{2}-\dfrac{7}{4}\right|-\dfrac{7}{4}=-\dfrac{3}{2}\)
d: =x-5+8-x=3
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
b, \(-x-2=\dfrac{5}{4}\Rightarrow-x=\dfrac{13}{4}\Rightarrow x=-\dfrac{13}{4}\)
c, \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)
\(\Rightarrow-x=\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{4}{3}-\dfrac{1}{5}\)
\(\Rightarrow-x=-\dfrac{3}{2}\Rightarrow x=\dfrac{3}{2}\)
d, \(\dfrac{1}{3}-\left(\dfrac{2}{3}-x+\dfrac{5}{4}\right)=\dfrac{7}{12}-\left(\dfrac{5}{2}-\dfrac{13}{6}\right)\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{2}{3}+x-\dfrac{5}{4}=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{11}{6}\)
Chúc bạn học tốt!!!
Bài 1:
a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)
\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)
\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)
b )
\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)
\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)
c)
\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)
\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)
Bài 3:
a) Ta thấy:
\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)
Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)
b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)
Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
T giải thử thôi nhé :w
a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)
\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)
\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)
\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)
\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)
\(=-1.\frac{25x^3y^2}{8}\)
\(=-\frac{25x^3y^2}{8}\)
a,
\(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x-1+\dfrac{5}{6}x-\dfrac{7}{3}-\dfrac{5}{8}x+2=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x+\dfrac{5}{6}x-\dfrac{5}{8}x=\dfrac{7}{2}+1+\dfrac{7}{3}-2\)
\(\Rightarrow\dfrac{11}{24}x=\dfrac{29}{6}\)
\(\Rightarrow x=\dfrac{116}{11}\)
b,
\(\left|2-\dfrac{3}{2}x\right|-4=x+2\)
\(\Rightarrow\left|2-\dfrac{3}{2}x\right|=x-2\)
\(\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-\left(x+2\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-2=x+\dfrac{3}{2}x\\2+2=-x+\dfrac{3}{2}x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=0\\\dfrac{1}{2}x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
c,
\(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{6}{5}x+\dfrac{3}{5}-x^2+\dfrac{1}{2}x=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{7}{10}x=\dfrac{1}{6}-\dfrac{3}{5}-x^2+x^2\)
\(\Rightarrow-\dfrac{7}{10}x=-\dfrac{13}{30}\Leftrightarrow x=\dfrac{13}{21}\)
Câu 2:
(x-4/7)(x+1/2)>0
=>x-4/7>0 hoặc x+1/2<0
=>x>4/7 hoặc x<-1/2