K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

bài 1

a)\(x^2+5x+6=\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

23 tháng 10 2018

\(x^2-y^2-ax+ay\)

\(=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-a\right)\)

\(2xy-x^2-y^2+16\)

\(=4^2-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

\(x^2+5x+4\)

\(=\left(x^2+x\right)+\left(4x+4\right)\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

16 tháng 10 2016

Rút gọn

\(\left(2x+1\right)\left(4x^2-3x+1\right)+\left(2x-1\right)\left(4x^2+3x+1\right)\)

\(=8x^3-12x^2+2x+4x^2-3x+1+8x^3+12x^2+2x-4x^2-3x-1\)

\(=16x^3-2x\)

Phân tích đa thức thnahf nhân tử

\(4y^2+16y-x^2-8x\)

\(=\left(4y^2-x^2\right)+\left(16y-8x\right)\)

\(=\left(2y-x\right)\left(2y+x\right)+8\left(2y-x\right)\)

\(=\left(2y-x\right)\left(2y+x+8\right)\)

Chứng minh .............

Có: \(x^2+x+1=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Kết luận......

 

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)

30 tháng 11 2018

\(b,x^2+4x+3=x^2+3x+x+3.\)

\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)

\(c,16x-5x^2-3=x-5x^2+15x-3\)

\(=x\left(1-5x\right)+3\left(5x-1\right)\)

\(=\left(x+3\right)\left(1-5x\right)\)

\(d,x^4+4=x^4+4x^2+4-4x^2=\left(x+2\right)^2-4x^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

30 tháng 11 2018

\(e,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right).\)

\(=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-1+y\right)\left(x-1-y\right)\)

a, sửa đề : x2 + 7x - 8 

\(x^2+7x-8=x^2-x+8x-8\)

\(=x\left(x-1\right)+8\left(x-1\right)=\left(x-1\right)\left(x+8\right)\)

24 tháng 12 2017

a) -y2 + 2xy - x2 + 3x - 3y

= (3x - 3y) - (x2 - 2xy + y2)

= 3(x - y) - (x - y)2

= (x - y)(3 - x + y)

b) x3 - 2x2 - x + 2

= (x3 - x) - (2x2 - 2)

= x(x2 - 1) - 2(x2 - 1)

= (x2 - 1)(x - 2)

= (x - 2)(x - 1)(x + 1)

c) x2(x + 1) - 2x(x + 1) + x + 1

= (x + 1)(x2 - 2x + 1)

= (x + 1)(x - 1)2

d) a2 + b2 + 2a - 2b - 2ab

= (a2 - 2ab + b2) + (2a - 2b)

= (a - b)2 + 2(a - b)

= (a - b)(a - b + 2)

e) 4x2 - 8x + 3

= (4x2 - 2x) - (6x - 3)

= 2x(2x - 1) - 3(2x - 1)

= (2x - 1)(2x - 3)

f) 25 - 16x2

= 52 - (4x)2

= (5 - 4x)(5 + 4x)

24 tháng 12 2017

a, -y2 + 2xy - x2 + 3x - 3y

= - (x2 - 2xy + y2) + 3(x - y)

= - (x - y)2 + 3(x - y)

= (x - y) (3 - x + y)

b, x3 - 2x2 - x + 2

= x2 (x - 2) - (x - 2)

= (x - 2)(x2 - 1)

= (x - 2)(x - 1)(x + 1)

c, x2 (x + 1) - 2x(x + 1) + x + 1

= x2 (x + 1) - 2x(x + 1) + (x + 1)

= (x + 1)(x2 - 2x + 1)

= (x + 1)(x - 1)2

d, a2 + b2 + 2a - 2b - 2ab

= (a2 - 2ab + b2 )+ (2a - 2b)

= (a - b)2 + 2(a - b)

= (a - b)( a - b + 2)

e, 4x2 - 8x + 3

= 4x2 - 2x - 6x + 3

= 2x( 2x - 1) - 3(2x - 1)

= (2x - 1)(2x - 3)

f, 25 - 16x2

= 52 - (4x)2

= (5 - 4x)(5 + 4x)

Chúc bạn học tốt!

13 tháng 10 2018

a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)

b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)

c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)

d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)

13 tháng 10 2018

cảm ơn nha

2 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(3a^2-3ab+9b-9a=3a\left(a-b\right)+9\left(b-a\right)=3\left(a-b\right)\left(a-3\right)\)

b) \(2xm^3-2m=2m\left(xm^2-1\right)\)

c) \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Tìm x:

a) \(8x^2+10x+3=0\)

\(\Leftrightarrow8x^2+12x-2x-3=0\Leftrightarrow4x\left(2x+3\right)-\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{1}{4}\end{array}\right.\)

b) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)

3 tháng 10 2016

kamasa pn nhìu lắm lun nahh^^

4 tháng 12 2018

a. \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

b. \(x^2-y^2-4x+4=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)

c. \(\left(x^2+9\right)^2-36x^2=\left(x^2+6x+9\right)\left(x^2-6x+9\right)=\left(x+3\right)^2\left(x-3\right)^2\)

d. \(25-x^2+2xy-y^2=25-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)

còn lại làm tương tự

4 tháng 12 2018

a) \(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

b) \(x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)

c) \(\left(x^2+9\right)^2-36x^2=\left(x^2+9\right)^2-\left(6x\right)^2=\left(x^2-6x+9\right)\left(x^2+6x+9\right)\)

\(=\left(x-3\right)^2\left(x+3\right)^2\)

d) \(25-x^2+2xy-y^2=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)

e) \(x^3-4x^2+4x-1=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1-4x\right)=\left(x-1\right)\left(x^2-3x+1\right)\)

f) \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3-x+y\right)\)

g) \(2x^2-9x+10=2x^2-4x-5x+10=2x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(2x-5\right)\)

h) \(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)

i) \(x^3-3x^2+2=x^3-2x^2-x^2+2=x^2\left(x-1\right)-2\left(x^2-1\right)\)

\(=x\left(x-1\right)-2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x-2x-2\right)\)

k) \(x^4+4=\left(x^2\right)^2+2\cdot x^2\cdot2+2^2-2\cdot x^2\cdot2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)