K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :

\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)

\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)

Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)

Gọi giao điểm của EI với CD là N

Chứng minh tương tự , ta có :

\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)

18 tháng 9 2020

Xin lỗi , mình chỉ biết giải đến đấy

30 tháng 6 2016

Tui Đang vội xin mội người giúp nhé! Cảm Ơn

31 tháng 8 2021

cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:

a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.

b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD