K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Ta có:

\(a+b+c\ge abc\) (gt)

mà \(a^2+b^2+c^2\ge a+b+c\forall a,b,c\ge0\) 

\(\Rightarrow a^2+b^2+c^2\ge abc\left(đpcm\right)\)

23 tháng 8 2019

nếu sd bổ đề thì ít nhất bạn cx cần nói sơ qua về nó hoặc cm nó ạ

4 tháng 12 2016

CHo a => 4  b => 5  c => 6 và a2 + b+ c2 = 90

CMR a +b + c => 16

4 tháng 12 2016

 a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 va cac hoan vi cua no

30 tháng 10 2018

Ta cần chứng minh

\(a+b+c\ge ab+bc+ca\)

do \(x^2+y^2+z^2\ge xy+yz+zx\)

đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)

9 tháng 11 2018

Ma Đức Minh cho hỏi cái dòng đầu tiên :)