Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)
Vậy \(\sqrt{25}+\sqrt{45}< 12.\)
b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)
Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)
\(=2013.2014+2014-2013.2014-2013=1>0\)
\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)
Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)
\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)
c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Mà \(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)
\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)
Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)
Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)
\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)
Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)
lop8. thi ap bdt nhu thanh song,
a)
VT=√25+√45<√2(25+45)=√140<√144=12=VP
b)
VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.
c) C=VT-VP
√2014+√2012-2√2012
kq(b)=> C<0
VT<VP
a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)
mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)
nên \(2\sqrt{3}< 3\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)
\(4^2=16=9+7\)
mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)
hay \(2\sqrt{3}+1< 4\)
c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)
hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)
\(a\))Ta có:\(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
Vì \(\sqrt{12}< \sqrt{18}\)
⇒\(2\sqrt{3}< 3\sqrt{2}\)
\(b\))Ta có:\(2\sqrt{3}+1=\sqrt{12}+1\)
\(4=3+1=\sqrt{9}+1\)
Vì \(\sqrt{12}+1>\sqrt{9}+1\)
⇒\(2\sqrt{3}+1>4\)