Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số độ hai cạnh góc vuông là 5/6
=>Tỉ số giữa hai hình chiếu tương ứng của hai cạnh góc vuông trên cạnh huyền là (5/6)^2=25/36
Độ dài hình chiếu thứ nhất là:
122*25/61=50(cm)
Độ dài hình chiếu thứ hai là:
122-50=72(cm)
Lời giải:
Gọi độ dài 2 cạnh góc vuông của tam giác là $5a$ và $6a$ (với $a>0$)
Áp dụng định lý Pitago:
$(5a)^2+(6a)^2=122^2$
$\Leftrightarrow 61a^2=14884$
$\Rightarrow a^2=244$
Độ dài hình chiếu gọi là $d$. Theo hệ thức lượng trong tam giác:
$\frac{1}{d^2}=\frac{1}{(5a)^2}+\frac{1}{(6a)^2}$
$=\frac{61}{900a^2}=\frac{61}{900.244}=\frac{1}{3600}$
$\Rightarrow d^2=3600=60^2$
$\Rightarrow d=60$ (cm)
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Đặt a/5=b/6=k
=>a=5k; b=6k
Theo đề, ta có: \(a^2+b^2=122^2\)
\(\Leftrightarrow61k^2=122^2\)
\(\Leftrightarrow k^2=244\)
\(\Leftrightarrow k=2\sqrt{61}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=10\sqrt{61}\left(cm\right)\\b=12\sqrt{61}\left(cm\right)\end{matrix}\right.\)
Độ dài hình chiếu của cạnh góc vuông a là:
\(=\dfrac{\left(10\sqrt{61}\right)^2}{122}=50\left(cm\right)\)
Độ dài hình chiếu của cạnh góc vuông b là:
122-50=72(cm)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Gọi tam giác vuông trên là ABC, ta có:
AB/AC=3/4
=> AB^2/AC^2 = 9/16
=> 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tam giác vuông ABC,tam giác vuông BHA và tam giác vuông AHC là 3 tam giác đồng dạng.
Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
Gọi tam giác vuông đó là tam giác ABC (góc BAC = 900),
\(\dfrac{AB}{AC}=\dfrac{3}{4}\&BC=125\left(cm\right)\) , gọi \(AH\perp BC=\left\{H\right\}\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=AC\dfrac{3}{4}\left(1\right)\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC, có:
\(AB^2+AC^2=BC^2\left(2\right)\)
Thay (1) vào (2) ta được:
\(\left(\dfrac{3}{4}AC\right)^2+AC^2=BC^2\Leftrightarrow AC^2\dfrac{9}{16}+AC^2=BC^2\Leftrightarrow AC^2\dfrac{25}{16}=BC^2\)
Mà BC = 125cm
\(\Rightarrow AC^2\dfrac{25}{16}=125^2\Leftrightarrow AC^2=10000\Leftrightarrow AC=100\left(cm\right)\)
Thay AC = \(100\) vào (1) ta được:
\(AB=\dfrac{3}{4}.100=75\left(cm\right)\)
Ta lại có: \(AB^2=BC.BH\) (định lí 1)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\left(cm\right)\)
mà BH + CH = BC \(\Rightarrow CH=BC-BH=125-45=80\left(cm\right)\)
Vậy AB = 75cm, AC = 100cm, BH = 45cm, CH = 80cm
- Giả sử tam giác ABC vuông tại A . Theo bài ra , ta có :
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\left(1\right)\)
- Áp dụng đlí Py - ta - go cho tam giác vuông ABC ( \(\widehat{A}=90^o\))
Ta có : \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow125^2=\left(\frac{3}{4}AC\right)^2+AC^2\)
\(\Leftrightarrow15625=\frac{9}{16}AC^2+AC^2\)
\(\Leftrightarrow15625=\left(\frac{9}{16}+1\right)AC^2\)
\(\Leftrightarrow\frac{25}{16}AC^2=15625\)
\(\Leftrightarrow AC^2=\frac{15625.16}{25}\)
\(\Leftrightarrow AC=\sqrt{\frac{15625.16}{25}}=\frac{125.4}{5}=100\left(cm\right)\)
Thay AC = 100cm vào (1) , ta được :
\(AB=\frac{3}{4}.100=75\left(cm\right)\)
- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) đường cao AH , ta có :
\(AB^2=BH.BC\)
\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{75^2}{125}=45\left(cm\right)\)
Ta lại có : BC = BH + HC
125 = 45 + HC
HC = 125 - 45 = 80 ( cm )
Vậy : AB = 75 cm
AC = 100 cm
HC = 80 cm
BH = 45 cm